Numerical Simulation of Mixed Convection in a Rectangular Cavity With Multiple Heat Sources

Author(s):  
Hasan Gunes ◽  
Sertac Cadırcı ◽  
Kenan Gocmen

A numerical study is presented for a mixed convection in a two-dimensional partially open rectangular cavity. The uniform heat-flux, discrete heat sources are flush-mounted on three identical heat conducting vertical boards, which are mounted on the bottom wall of a partially open cavity. An external airflow enters the cavity through an opening (inlet) in the left vertical wall and exits from the opposite opening (outlet) in the right vertical wall. In this paper, the effect of the number of boards on the flow and thermal field characteristics are investigated and compared with a single board case, where appropriate. The simulations are carried out for wide ranges of Reynolds number and Richardson number (buoyancy parameter, Ri = Gr/Re2) for a working fluid of air (Pr = 0.71). The solutions were found to be time-independent for only sufficiently low values of Re and Ri. For large Re and/or Ri, the oscillatory flow is analyzed by considering time-histories, frequencies and instantaneous snapshots for the field variables. The effect of the oscillatory flow on the heat removal from the heat source is discussed. It was observed that with the onset of oscillatory flow, the re-circulating cells set into motion and thus considerable reduction in the maximum dimensionless temperature is achieved, making the cooling with convection as an effective mode of heat transfer. The results also indicate that the Reynolds number and Richardson number have a strong effect on the temperature and velocity distributions as well as the average Nusselt number evaluated over the heat source.

2009 ◽  
Vol 14 (2) ◽  
pp. 217-247 ◽  
Author(s):  
Md. M. Rahman ◽  
M. A. Alim ◽  
M. A. H. Mamun

. Combined free and forced convection in a two dimensional rectangular cavity with a uniform heat source applied on the right vertical wall is studied numerically. A circular heat conducting horizontal cylinder is placed somewhere within the cavity. The present study simulates a practical system, such as a conductive material in an inert atmosphere inside a furnace with a constant flow of gas from outside. Importance is placed on the influences of the configurations and physical properties of the cavity. The development mathematical model is governed by the coupled equations of continuity, momentum and energy and is solved by employing Galerkin weighted residual finite element method. In this paper, a finite element formulation for steadystate incompressible conjugate mixed convection and conduction flow is developed. The computations are carried out for wide ranges of the governing parameters, Reynolds number (Re), Richardson number (Ri), Prandtl number (Pr) and some physical parameters. The results indicate that both the heat transfer rate from the heated wall and the dimensionless temperature in the cavity strongly depend on the governing parameters and configurations of the system studied, such as size, location, thermal conductivity of the cylinder and the location of the inflow and outflow opening. Detailed results of the interaction between forced airstreams and the buoyancy-driven flow by the heat source are demonstrated by the distributions of streamlines, isotherms and heat transfer coefficient.


Author(s):  
Rajat Dhingra ◽  
P. S. Ghoshdastidar

A numerical study of steady, laminar, two-dimensional mixed convection air cooling of identical as well as non-identical rectangular protruding heat sources located on one side of a vertical channel is presented in this paper. The stream function-vorticity-temperature approach with the finite-difference-based methodology implementing higher order upwind scheme has been applied. Three cases have been considered, namely (i) when the number of identical chips is two; (ii) when the number varies from 3 to 10; and finally, (iii) when five chips of different heights but of same width are placed in various orders. For the case of two chips the effects of Re, Gr/Re2 (that is, Richardson number), dimensionless separation distance between the chips (d/H), dimensionless chip height (h/H) and width (w/H) on the average Nusselt number of each chip have been investigated. A correlation based on regression analysis is also presented for each parameter. With increase in Reynolds number the average Nusselt number of both chips increases. Similar trend is seen when the separation distance between two chips is raised. It is also observed that as the number of chips escalates from 2 to 10, the average Nusselt number of downstream chips becomes smaller than that of the upstream chips, the rate of drop being much sharper near the channel inlet. A regression-analysis based composite correlation each for average Nusselt number of Chip 1 (lower chip) and Chip 2 (upper chip) as a function of Reynolds number, Richardson number, separation distance between the chips, chip height and width has been obtained for the 2-chip case. The model also predicts maximum chip temperature in an array of ten chips. Finally, for five non-identical chips having same width but different heights the simulation reveals that the chips placed in increasing order of their heights in the direction of air flow are cooled better as compared to any other pattern of placement of the chips.


2021 ◽  
Vol 4 (8(112)) ◽  
pp. 16-22
Author(s):  
Mahmoud A. Mashkour

The heat convection phenomenon has been investigated numerically (mathematically) for a channel located horizontally and partially heated at a uniform heat flux with forced and free heat convection. The investigated horizontal channel with a fluid inlet and the enclosure was exposed to the heat source from the bottom while the channel upper side was kept with a constant temperature equal to fluid outlet temperature. Transient, laminar, incompressible and mixed convective flow is assumed within the channel. Therefore, the flow field is estimated using Navier Stokes equations, which involves the Boussinesq approximation. While the temperature field is calculated using the standard energy model, where, Re, Pr, Ri are Reynolds number, Prandtl number, and Richardson number, respectively. Reynolds number (Re) was changed during the test from 1 to 50 (1, 10, 25, and 50) for each case study, Richardson (Ri) number was changed during the test from 1 to 25 (1, 5, 10, 15, 20, and, 25). The average Nusselt number (Nuav) increases exponentially with the Reynold number for each Richardson number and the local Nusselt number (NuI) rises in the heating point. Then gradually stabilized until reaching the endpoint of the channel while the local Nusselt number increases with a decrease in the Reynolds number over there. In addition, the streamlines and isotherms patterns in case of the very low value of the Reynolds number indicate very low convective heat transfer with all values of Richardson number. Furthermore, near the heat source, the fluid flow rate rise increases the convection heat transfer that clarified the Nusselt number behavior with Reynolds number indicating that maximum Nu No. are 6, 12, 27 and 31 for Re No. 1, 10, 25 and 50, respectively


Author(s):  
Nalla Ramu ◽  
P. S. Ghoshdastidar

Abstract This paper presents a computational study of mixed convection cooling of four in-line electronic chips by alumina-deionized (DI) water nanofluid. The chips are flush-mounted in the substrate of one wall of a vertical rectangular channel. The working fluid enters from the bottom with uniform velocity and temperature and exits from the top after becoming fully developed. The nanofluid properties are obtained from the past experimental studies. The nanofluid performance is estimated by computing the enhancement factor which is the ratio of chips averaged heat transfer coefficient in nanofluid to that in base fluid. An exhaustive parametric study is performed to evaluate the dependence of nanoparticle volume fraction, diameter of Al2O3 nanoparticles in the range of 13–87.5 nm, Reynolds number, inlet velocity, chip heat flux, and mass flowrate on enhancement in heat transfer coefficient. It is found that nanofluids with smaller particle diameters have higher enhancement factors. It is also observed that enhancement factors are higher when the nanofluid Reynolds number is kept equal to that of the base fluid as compared with the cases of equal inlet velocities and equal mass flowrates. The linear variation in mean pressure along the channel is observed and is higher for smaller nanoparticle diameters.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Muneer A. Ismael ◽  
Ahmed Kadhim Hussein ◽  
Fateh Mebarek-Oudina ◽  
Lioua Kolsi

Abstract The mixed convection in an open trapezoidal lid-driven cavity connected with a channel is investigated in the present paper. Four different cases were considered depending on the movement of the cavity sidewalls. For case I, the left sidewall moves downward; for case II, the left sidewall moves downward and the right one moves upward; while for case III, only the right sidewall moves upward. A comparative case (case 0) is accounted when both sidewalls are assumed stationary. The base of the cavity is subjected to a localized heat source of constant temperature Th. The effects of Richardson number Ri and Reynolds number ratio Rer on the flow and thermal fields have been investigated. The results indicated that for cases I and II, the average Nusselt number increases with the increase of the Richardson number and Reynolds number ratio. Moreover, it was found that the maximum average Nusselt number occurs with case I. When the lid-driven speed is three times that of the inlet airflow velocity, the augmentations of the average Nusselt number compared with stationary walls are 163%, 158%, and 96% for cases I, II, and III, respectively.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Bugra Sarper ◽  
Mehmet Saglam ◽  
Orhan Aydin

In this study, convective heat transfer in a discretely heated parallel-plate vertical channel which simulates an IC package is investigated experimentally and numerically. Both natural and mixed convection cases are considered. The primary focus of the study is on determining optimum relative lengths of the heat sources in order to reduce the hot spot temperature and to maximize heat transfer from the sources to air. Various values of the length ratio and the modified Grashof number (for the natural convection case)/the Richardson number (for the mixed convection case) are examined. Conductive and radiative heat transfer is included in the analysis while air is used as the working fluid. Surface temperatures of the heat sources and the channel walls are measured in the experimental study. The numerical studies are performed using a commercial CFD code, ANSYS fluent. The variations of surface temperature, hot spot temperature, Nusselt number, and global conductance of the system are obtained for varying values of the working parameters. From the experimental studies, it is showed that the use of identical heat sources reduces the overall cooling performance both in natural and mixed convection. However, relatively decreasing heat sources lengths provides better cooling performance.


Author(s):  
D. Y. Goswami ◽  
Gunnar Tamm ◽  
Sanjay Vijayaraghavan

A new thermodynamic cycle has been developed for the simultaneous production of power and cooling from low temperature heat sources. The proposed cycle combines the Rankine and absorption refrigeration cycles, providing power and cooling in desired ratios to best suit the application. A binary mixture of ammonia and water is used as the working fluid, providing a good thermal match with the sensible heat source over a range of boiling temperatures. Due to its low boiling point, the ammonia-rich vapor expands to refrigeration temperatures while work is extracted through the turbine. Absorption condensation of the vapor back into the bulk solution occurs near ambient temperatures. The proposed cycle is suitable as a bottoming cycle using waste heat from conventional power generation systems, or can utilize low temperature solar or geothermal renewable resources. The cycle can be scaled to residential, commercial or industrial uses, providing power as the primary goal while satisfying some of the cooling requirements of the application. The cycle is under both theoretical and experimental investigations. Initial parametric studies of how the cycle performs at various operating conditions showed the potential for the cycle to be optimized. Optimization studies performed over a range of heat source and heat sink temperatures showed that the cycle could be optimized for maximum work or cooling output, or for first or second law efficiencies. Depending on the heat source temperatures, as much as half of the output may be obtained as refrigeration under optimized conditions, with refrigeration temperatures as low as 205 K being achievable. Maximum second law efficiencies over 60% have been found with the heat source between 350 and 450 K. An experimental system was constructed to verify the theoretical results and to demonstrate the feasibility of the cycle. The investigation focused on the vapor generation and absorption processes, setting up for the power and refrigeration studies to come later. The turbine was simulated with an equivalent expansion process in this initial phase of testing. Results showed that the vapor generation and absorption processes work experimentally, over a range of operating conditions and in simulating the sources and sinks of interest. The potential for combined work and cooling output was evidenced in operating the system. Comparison to ideally simulated results verified that there are thermal and flow losses present, which were assessed to make both improvements in the experimental system and modifications in the simulations to include realistic losses.


1995 ◽  
Vol 117 (3) ◽  
pp. 649-658 ◽  
Author(s):  
E. Papanicolaou ◽  
Y. Jaluria

A numerical simulation of the turbulent transport from an isolated heat source in a square cavity with side openings is presented in this work. The openings allow an externally induced air stream at ambient temperature to flow through the cavity and, thus, mixed convection arises. Results for the turbulent regime are obtained, by employing a suitable, high-Reynolds-number from of the K–E turbulence model. A stream function-vorticity mathematical formulation is used, along with the kinetic energy and dissipation rate equations and an expression for the eddy viscosity. A time-marching scheme is employed, using the ADI method. The values of the Reynolds number Re, associated with the external flow, and the Grashof number Gr, based on the heat flux from the source, for which turbulent flow sets in are sought. Two typical values of the Reynolds number are chosen, Re = 1000 and Re = 2000, and turbulent results are obtained in the range Gr = 5 × 107 – 5 × 108. For both values of Re, the average Nusselt number over the surface of the source is found to vary with Gr in a fashion consistent with previous numerical and experimental results for closed cavities, while the effect of Re in the chosen range of values was small.


2020 ◽  
Vol 9 (3) ◽  
pp. 230-241
Author(s):  
M. A. Mansour ◽  
S. Sivasankaran ◽  
A. M. Rashad ◽  
T. Salah ◽  
Hossam A. Nabwey

The current investigation analyzes the effects of partial slip and heat generation on the mixed convection flow with heat transfer in an inclined double lid-driven square cavity containing centered square adiabatic obstacle in the presence of magnetic field. The used cavity is subjected to constant heat flux and filled with Cu-water nanofluid. The top and bottom horizontal walls are thermally insulated and move with uniform velocity while the right vertical wall is maintained at a constant low temperature. A uniform heat flux is located in a part of th left wall of the cavity while the remaining part of this wall is thermally insulated. Finite volume technique is utilized to solve dimensionless governing equations of the problem. The proposed method is validated with the previous published numerical studies which distinctly offer a good agreement. The obtained results show that changing in the heat source length affects much the flow and thermal fields than the position of heat source. The averag Nusselt number decreases when the aspect ratio of the obstacle and heat source length increases. The heat transfer rate behaves nonlinearly with inclination of the cavity.


Sign in / Sign up

Export Citation Format

Share Document