scholarly journals Intermediate Scale Composite Material Fire Testing

Author(s):  
Alexander L. Brown ◽  
Amanda B. Dodd ◽  
Brent M. Pickett

Composite materials are increasingly being used in aviation applications. As the quantity of composite material increases, there is a corresponding need to develop a better understanding of composite material response in fire environments. We have recently developed a program to examine this problem experimentally and computationally. Although Sandia National Laboratories and Air Force Research Laboratories at Tyndall have slightly different focuses, we are collaborating to focus on understanding duration, intensity, and the underlying physics during composite fires, as well as the technology and procedures to safely manage composite fire events. In the past year, we have been performing both small and intermediate scale testing to understand the behavior of composite materials used in aviation applications. The current focus is on a set of intermediate scale tests to generate data useful for understanding the behavior of carbon fiber epoxy composites in adverse thermal environments. A series of tests has been performed in a 90 cm cubic enclosure with 25–40 kg of composite materials to generate a severe fire environment fueled mostly by the composites. Preliminary results of these tests will be reported to provide data on the severity of the environment in terms of thermal intensity, duration, and chemical products.

2016 ◽  
Vol 254 ◽  
pp. 207-211 ◽  
Author(s):  
Erika Popa ◽  
Liviu Pascu ◽  
Ana Socalici ◽  
Marius Ardelean

The paper relates laboratory experiments in order to obtain a composite material used for brake shoe manufacture. Regarding the testing materials were processed 38 samples. The percentage and composition of materials are: 15-45% novolac, 1,5-10% hexametyltetramin, 0-8% sulfur, 0-15% carbon fiber, 0-20% graphite, 0-25% aluminum, 15-28% brass and 0-40% rubber. The evolution of tribological and temperature parameters were analyzed in the contact zone tribological testing disk - split pin method. The composite material has the role to replace the classic material (cast iron) used in brake shoes composition in order to reduce the noise caused by rolling stock.


2021 ◽  
Vol 19 (4) ◽  
pp. 293-298
Author(s):  
V. A. Kriventseva ◽  
Y. B. Vorobieva ◽  
V. V. Nikitenko

Aim. To study with the help of a microscope the marginal fit of Bulk-Fill group composite materials to the hard tissues of the tooth. Optimize the method of heating the composite in the cavity.Materials and methods. The marginal fit of the composite material of the Bulk-Fill group, sealed in 30 teeth of chewing anatomical and functional accessories extracted according to various indications, was studied. Materials used in the laboratory experiment: 3M ESPE Filtek posterior restorative Bulk Fill, SDR (Dentsply Sirona), Sonic Fill (Kerr). According to the manufacturers, the materials are used with the method of single-portion sealing. The research was conducted at the Department of General Dentistry of the S.M.Kirov Military Medical Academy of the Ministry of Defense of the Russian Federation.Results. 30 teeth extracted according to various indications of chewing anatomical and functional accessories were indicators were shown by the Sonic Fill (Kerr) system, due to heating and changing the viscosity of the material.Conclusions. It was proved in the laboratory that the heated composites of the Bulk-Fill group had the best edge fit during sealing than composites at normal room temperature. A nozzle was developed for heating the composite in the tooth cavity (priority application No. 2021120658 dated 12.07.2021). 


2014 ◽  
Vol 540 ◽  
pp. 52-55
Author(s):  
Tie Huan Sun

In many sports, tennis occupies an important position. For a tennis player, it is an important factor in a good pair of tennis to win the game. The composite materials in the production process in tennis racket are studies in this paper. Analyzed and demonstrated several ways from its function and structure, process performance, process and process analysis. Finally, the production process of the racket will be detailed study, and then a conclusion will be get that is composite material has important practical value in the production of a tennis racket.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1607
Author(s):  
Renata Ildikó Szavá ◽  
Ioan Szavá ◽  
Sorin Vlase ◽  
Arina Modrea

The properties of a composite material are determined by the properties of the constitutive materials. In engineering practice, there are many situations in which we have composite material, but we do not have information about the properties of each phase component. The measurements we can make in such cases are on the existing material, thus being able to determine, experimentally, the global physical properties of the composite. The possibility of realizing an estimate of the mechanical properties of each component poses a problem if we start from these measurements. The paper proposes a method to achieve this, starting from the theoretical estimates established in the literature, then illustrated by an example to determine the properties of wood. Wood is a transverse isotropic material and therefore the constitutive law has symmetries that are manifested in the decrease of the number of parameters that define the stress-strain liason, defined only by five independent parameters. The proposed method can be extended to a diversity of models and materials used in the study of composite materials.


2021 ◽  
Vol 31 (2) ◽  
pp. 101-108
Author(s):  
Faiza Khalid ◽  
Manaa Rabah ◽  
Saad Salah ◽  
Ameddah Hacene

The turbine blades are subjected to high operating temperatures and high centrifugal tensile stress due to rotational speeds. The maximum temperature at the inlet of the turbine is currently limited by the resistance of the materials used for the blades. The present paper is focused on the thermo-mechanical behavior of the blade in composite materials with reinforced mast under two different types of loading. The material studied in this work is a composite material, the selected matrix is a technical ceramic which is alumina (aluminum oxide Al2O3) and the reinforcement is carried out by short fibers of high modulus carbon to optimize a percentage of 40% carbon and 60% of ceramics. The simulation was performed numerically by Ansys (Workbench 16.0) software. The comparative analysis was conducted to determine displacements, strains and Von Mises stress of composite material and then compared to other materials such as Titanium Alloy, Stainless Steel Alloy, and Aluminum 2024 Alloy. The results were compared in order to select the material with the best performance in terms of rigidity under thermo-mechanical stresses. While comparing these materials, it is found that composite material is better suited for high temperature applications. On evaluating the graphs drawn for, strains and displacements, the blade in composite materials reinforced with mast is considered as optimum.


Author(s):  
N. Pavan ◽  
Jaysaheel I. Harti ◽  
K. S. Harishanand

There are various types of engineering materials used in both commercial as well as non-commercial applications, it becomes important to think about the life of the material, to prove about the economical aspect of the material. In order to increase the life, the conventional engineering materials fails in one or the other aspects. So the arrival of composite materials is important, which shows better mechanical properties than the regular engineering materials with lower weights. A study on the wear behaviour of a composite material (Al-B4C), under varying concentration of the reinforcement is made to understand the material usability under the cyclic operating conditions.


2020 ◽  
Vol 12 ◽  
Author(s):  
Alexandra Atyaksheva ◽  
Yermek Sarsikeyev ◽  
Anastasia Atyaksheva ◽  
Olga Galtseva ◽  
Alexander Rogachev

Aims:: The main goals of this research are exploration of energy-efficient building materials when replacing natural materials with industrial waste and development of the theory and practice of obtaining light and ultra-light gravel materials based on mineral binders and waste dump ash and slag mixtures of hydraulic removal. Background.: Experimental data on the conditions of formation of gravel materials containing hollow aluminum and silica microsphere with opportunity of receipt of optimum structure and properties depending on humidity with the using of various binders are presented in this article. This article dwells on the scientific study of opportunity physical-mechanical properties of composite materials optimization are considered. Objective.: Composite material contains hollow aluminum and silica microsphere. Method.: The study is based on the application of the method of separation of power and heat engineering functions. The method is based on the use of the factor structure optimality, which takes into account the primary and secondary stress fields of the structural gravel material. This indicates the possibility of obtaining gravel material with the most uniform distribution of nano - and microparticles in the gravel material and the formation of stable matrices with minimization of stress concentrations. Experiments show that the thickness of the cement shell, which performs power functions, is directly related to the size of the raw granules. At the same time, the thickness of the cement crust, regardless of the type of binder, with increasing moisture content has a higher rate of formation for granules of larger diameter. Results.: The conditions for the formation of gravel composite materials containing a hollow aluminosilicate microsphere are studied. The optimal structure and properties of the gravel composite material were obtained. The dependence of the strength function on humidity and the type of binder has been investigated. The optimal size and shape of binary form of gravel material containing a hollow aluminosilicate microsphere with a minimum thickness of a cement shell and a maximum strength function was obtained. Conclusion.: Received structure allows to separate power and heat engineering functions in material and to minimize the content of the excited environment centers.


Author(s):  
Jiyuan Fan ◽  
Chengkun Xiao ◽  
Jinlin Mei ◽  
Cong Liu ◽  
Aijun Duan ◽  
...  

CoMo series catalysts based on ZSM-22/PHTS (ZP) composite materials with different SiO2/Al2O3 molar ratios were prepared via the impregnation method. The properties of the ZP material and the corresponding catalysts...


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 145
Author(s):  
Lesław Kyzioł ◽  
Katarzyna Panasiuk ◽  
Grzegorz Hajdukiewicz ◽  
Krzysztof Dudzik

Due to the unique properties of polymer composites, these materials are used in many industries, including shipbuilding (hulls of boats, yachts, motorboats, cutters, ship and cooling doors, pontoons and floats, torpedo tubes and missiles, protective shields, antenna masts, radar shields, and antennas, etc.). Modern measurement methods and tools allow to determine the properties of the composite material, already during its design. The article presents the use of the method of acoustic emission and Kolmogorov-Sinai (K-S) metric entropy to determine the mechanical properties of composites. The tested materials were polyester-glass laminate without additives and with a 10% content of polyester-glass waste. The changes taking place in the composite material during loading were visualized using a piezoelectric sensor used in the acoustic emission method. Thanks to the analysis of the RMS parameter (root mean square of the acoustic emission signal), it is possible to determine the range of stresses at which significant changes occur in the material in terms of its use as a construction material. In the K-S entropy method, an important measuring tool is the extensometer, namely the displacement sensor built into it. The results obtained during the static tensile test with the use of an extensometer allow them to be used to calculate the K-S metric entropy. Many materials, including composite materials, do not have a yield point. In principle, there are no methods for determining the transition of a material from elastic to plastic phase. The authors showed that, with the use of a modern testing machine and very high-quality instrumentation to record measurement data using the Kolmogorov-Sinai (K-S) metric entropy method and the acoustic emission (AE) method, it is possible to determine the material transition from elastic to plastic phase. Determining the yield strength of composite materials is extremely important information when designing a structure.


Sign in / Sign up

Export Citation Format

Share Document