Numerical Study of Slip Factor Model: Effect of Inlet Total Pressure and Gas Composition on the Performance Curve of Centrifugal Compressor

Author(s):  
M. R. Aligoodarz ◽  
M. H. Moshrefi A. ◽  
H. Karrabi ◽  
M. R. Soleimani Tehrani

Development of hardware and CFD codes, especially in turbulence model and optimization of numerical codes has led to increment in usage of CFD which is capable of simulating different experimental situations take place at laboratory. Particularly in issues related to turbo machinery, two-dimensional test of blades, three-dimensional investigation of different stages and studying the effect of different parameters are very costly. By means of CFD modeling all these issues are accessible. Actual flow within the compressor is three dimensional and fully turbulent due to geometry complexity, flow velocity and viscosity. For this reason it has become more and more popular to perform 3D numerical studies. In this study three-dimensional analysis of flow in a two stage centrifugal compressor is performed. Since no experimental data is available to evaluate the results of the present numerical analysis, validation is done by using experimental data of the gas turbine set up at Sharif University of Technology Laboratory. Numerical results are used for the evaluation of the slip factor models and finally, the effects of inlet gas composition and inlet total pressure on characteristic map are investigated.

Author(s):  
Christopher W. Robak ◽  
Amir Faghri ◽  
Karen A. Thole

Abstract Turbine rim cavities require an adequate supply of cooling purge flow to prevent hot gas ingestion from overheating metal components beneath the gas path airfoils. Purge flow is typically introduced into rim cavities through a labyrinth seal at the inner diameter of the cavity, or through conduits in the metal walls of the rim cavity. This numerical study will focus on purge flow introduced through axial holes in the stationary side of a turbine realistic rim cavity. Three dimensional Unsteady Reynolds-average Navier-Stokes (URANS) CFD modeling is utilized to model of cavity sealing effectiveness as a function of axial purge flow rate. CFD modeling is compared with experimental data from the test turbine in the Steady Thermal Aero Research Turbine (START). Results show good agreement with experimental data, especially at lower purge flow rates. Analytical depictions of the flow field setup in the rim cavity are provided, explaining trends observed in experimental data. Differences in sealing effectiveness trends between the upper and lower portions of the rim cavity are predicted by CFD modeling, adding insight to ingestion phenomena in turbine realistic rim cavities with complex geometry and flow leakage paths.


Author(s):  
Manjunath L Nilugal ◽  
K Vasudeva Karanth ◽  
Madhwesh N

This article presents the effect of volute chamfering on the performance of a forward swept centrifugal fan. The numerical analysis is performed to obtain the performance parameters such as static pressure rise coefficient and total pressure coefficient for various flow coefficients. The chamfer ratio for the volute is optimized parametrically by providing a chamfer on either side of the volute. The influence of the chamfer ratio on the three dimensional flow domain was investigated numerically. The simulation is carried out using Re-Normalisation Group (RNG) k-[Formula: see text] turbulence model. The transient simulation of the fan system is done using standard sliding mesh method available in Fluent. It is found from the analysis that, configuration with chamfer ratio of 4.4 is found be the optimum configuration in terms of better performance characteristics. On an average, this optimum configuration provides improvement of about 6.3% in static pressure rise coefficient when compared to the base model. This optimized chamfer configuration also gives a higher total pressure coefficient of about 3% validating the augmentation in static pressure rise coefficient with respect to the base model. Hence, this numerical study establishes the effectiveness of optimally providing volute chamfer on the overall performance improvement of forward bladed centrifugal fan.


2014 ◽  
Vol 663 ◽  
pp. 347-353
Author(s):  
Layth H. Jawad ◽  
Shahrir Abdullah ◽  
Zulkifli R. ◽  
Wan Mohd Faizal Wan Mahmood

A numerical study that was made in a three-dimensional flow, carried out in a modified centrifugal compressor, having vaned diffuser stage, used as an automotive turbo charger. In order to study the influence of vaned diffuser meridional outlet section with a different width ratio of the modified centrifugal compressor. Moreover, the performance of the centrifugal compressor was dependent on the proper matching between the compressor impeller along the vaned diffuser. The aerodynamic characteristics were compared under different meridional width ratio. In addition, the velocity vectors in diffuser flow passages, and the secondary flow in cross-section near the outlet of diffuser were analysed in detail under different meridional width ratio. Another aim of this research was to study and simulate the effect of vaned diffuser on the performance of a centrifugal compressor. The simulation was undertaken using commercial software so-called ANSYS CFX, to predict numerically the performance charachteristics. The results were generated from CFD and were analysed for better understanding of the fluid flow through centrifugal compressor stage and as a result of the minimum width ratio the flow in diffuser passage tends to be uniformity. Moreover, the backflow and vortex near the pressure surface disappear, and the vortex and detachment near the suction surface decrease. Conclusively, it was observed that the efficiency was increased and both the total pressure ratio and static pressure for minimum width ratio are increased.


2001 ◽  
Author(s):  
Weili Yang ◽  
Peter Grant ◽  
James Hitt

Abstract Our principle goal of this study is to develop a CFD based analysis procedure that could be used to analyze the geometric tradeoffs in scroll geometry when space is limited. In the study, a full centrifugal compressor stage at four different operating points from near surge to near choke is analyzed using Computational Fluid Dynamics (CFD) and laboratory measurement. The study concentrates on scroll performance and its interaction with a vaneless diffuser and impeller. The numerical results show good agreement with test data in scroll circumferential pressure distribution at different ΛAR, total pressure loss coefficient, and pressure distortion at the tongue. The CFD analysis also predicts a reasonable choke point of the stage. The numerical results provide overall flow field in the scroll and diffuser at different operating points. From examining the flow fields, one can have a much better understanding of rather complicated flow behavior such as jet-wake mixing, and choke. One can examine total pressure loss in detail to provide crucial direction for scroll design improvement in areas such as volute tongue, volute cross-section geometry and exit conical diffuser.


Author(s):  
M. B. Flathers ◽  
G. E. Bache ◽  
R. Rainsberger

The flowfield of a complex three dimensional radial inlet for an industrial pipeline centrifugal compressor has been experimentally determined on a half scale model. Based on the experimental results, inlet guide vanes have been designed to correct pressure and swirl angle distribution deficiencies. The unvaned and vaned inlets are analyzed with a commercially available fully 3D viscous Navier-Stokes code. Since experimental results were available prior to the numerical study, the unvaned analysis is considered a postdiction while the vaned analysis is considered a prediction. The computational results of the unvaned inlet have been compared to the previously obtained experimental results. The experimental method utilized for the unvaned inlet is repeated for the vaned inlet and the data has been used to verify the computational results. The paper will discuss experimental, design and computational procedures, grid generation, boundary conditions, and experimental versus computational methods. Agreement between experimental and computational results is very good, both in prediction and postdiction modes. The results of this investigation indicate that CFD offers a measurable advantage in design, schedule and cost and can be applied to complex, three dimensional radial inlets.


Author(s):  
Donghui Zhang ◽  
Jean-Luc Di Liberti ◽  
Michael Cave

A numerical study of the effect of the blade thickness on centrifugal impeller slip factor is presented in this paper. The CFD results show that generally the slip factor decreases as the blade thickness increases. Changing the thickness at different locations has different effects on the slip factor. The shroud side blade thickness has more effect on the impeller slip factor than the hub side blade thickness. In the flow direction, the blade thickness at 50% meridional distance is the major factor affecting the slip factor. The leading edge thickness has little effect on slip factor. There is an optimum thickness at the trailing edge for the maximum slip factor. For this impeller, the hub side thickness ratio of 0.5 between the trailing edge and the middle of the impeller gives the highest value of the slip factor, while the ratio of 0.25 at shroud side gives the highest value of the slip factor. A blockage factor is added into the slip factor model to include the aerodynamic blockage effect on the slip factor. The model explains the phenomena observed in the CFD results and the test data very well.


2019 ◽  
Vol 30 (11) ◽  
pp. 1950083 ◽  
Author(s):  
Hossien Montaseri ◽  
Hossein Asiaei ◽  
Abdolhossein Baghlani ◽  
Pourya Omidvar

This paper deals with numerical study of flow field in a channel bend in presence of a lateral intake using three-dimensional numerical model SSIIM2. The effects of bend on the structure of the flow around the intake are investigated and compared with the experimental data. The tests are carried out in a U-shaped channel bend with a lateral intake. The intake is located at the outer bank of an 180∘ bend at position 115∘ with 45∘ diversion angle and the experimental data can be used to calibrate and validate numerical models. The results show that both the center-region and outer-bank cross-stream circulations are observed in the experiments while only the former is captured by the numerical model due to the limitations of the turbulence model. In the curved channel after the intake, both experimental and numerical results show another type of bi-cellular circulations in which clockwise center-region circulations and counterclockwise circulations near the inner bank and the free surface (inner-bank circulations) are captured. The study shows that the numerical model very satisfactorily predicts streamlines, velocity field and flow pattern in the channel and in vicinity of the intake. Investigation of flow pattern around lateral intake in channel bends shows that contrary to the case of flow diversion in straight channels, the width of the dividing stream surface near water surface level is greater than that of near bed level. Finally, the effects of position and diversion angle of the lateral intake, discharge ratio and upstream Froude number on the flow pattern are investigated.


Author(s):  
Renan Emre Karaefe ◽  
Pascal Post ◽  
Marwick Sembritzky ◽  
Andreas Schramm ◽  
Francesca di Mare ◽  
...  

Abstract In this work, the performance characteristics and the flow field of a centrifugal compressor operating with supercritical CO2 are investigated by means of three-dimensional CFD. The considered geometry is based on main dimensions of the centrifugal compressor installed in the supercritical CO2 compression test-loop operated by Sandia National Laboratories. All numerical simulations are performed with a recently developed in-house hybrid CPU/GPU compressible CFD solver. Thermodynamic properties are computed through an efficient and accurate tabulation technique, the Spline-Based Table Look-Up Method (SBTL), particularly optimised for the applied density-based solution procedure. Numerical results are compared with available experimental data and accuracy as well as potentials in computational speedup of the solution method in combination with the SBTL are evaluated in the context of supercritical CO2 turbomachinery.


1996 ◽  
Vol 118 (2) ◽  
pp. 371-384 ◽  
Author(s):  
M. B. Flathers ◽  
G. E. Bache ◽  
R. Rainsberger

The flow field of a complex three-dimensional radial inlet for an industrial pipeline centrifugal compressor has been experimentally determined on a half-scale model. Based on the experimental results, inlet guide vanes have been designed to correct pressure and swirl angle distribution deficiencies. The unvaned and vaned inlets are analyzed with a commercially available fully three-dimensional viscous Navier–Stokes code. Since experimental results were available prior to the numerical study, the unvaned analysis is considered a postdiction while the vaned analysis is considered a prediction. The computational results of the unvaned inlet have been compared to the previously obtained experimental results. The experimental method utilized for the unvaned inlet is repeated for the vaned inlet and the data have been used to verify the computational results. The paper will discuss experimental, design, and computational procedures, grid generation, boundary conditions, and experimental versus computational methods. Agreement between experimental and computational results is very good, both in prediction and postdiction modes. The results of this investigation indicate that CFD offers a measurable advantage in design, schedule, and cost and can be applied to complex, three-dimensional radial inlets.


Author(s):  
Mahdi Nili-Ahmadabadi ◽  
Ali Hajilouy-Benisi ◽  
Mohammad Durali ◽  
Sayyed Mostafa Motavalli

In this research, the centrifugal compressor of a turbocharger is investigated experimentally and numerically. Performance characteristics of the compressor were obtained experimentally by measurements of rotor speed and flow parameters at the inlet and outlet of the compressor. Three dimensional flow field in the impeller and diffuser was analyzed numerically using a full Navier-Stokes program with SST turbulence model. The performance characteristics of the compressor were obtained numerically, which were then compared with the experimental results. The comparison shows good agreement. Furthermore, the effect of area ratio and tip clearance on the performance parameters and flow field was studied numerically. The impeller area ratio was changed by cutting the impeller exit axial width from an initial value of 4.1 mm to a final value of 5.1 mm, resulting in an area ratio from 0.792 to 0.965. For the rotor with exit axial width of 4.6 mm, performance was investigated for tip clearance of 0.0, 0.5 and 1.0 mm. Results of this simulation at design point showed that the compressor pressure ratio peaked at an area ratio of 0.792 while the efficiency peaked at a higher value of area ratio of 0.878. Also the increment of the tip clearance from 0 to 1 mm resulted in 20 percent efficiency decrease.


Sign in / Sign up

Export Citation Format

Share Document