Finite Element Analysis and Study of Tool Wear in Machining With Coated Tools

Author(s):  
Uma Maheshwera Reddy Paturi ◽  
Suresh Kumar Reddy Narala

Accurately predicting the tool wear in any machining process play an important role in enhancing the manufacturing process performance. In all machining operations, cutting tool wear is strongly influenced by contact temperatures, stresses, and relative sliding velocity at the machining interface. Based on cutting temperatures and stresses on the tool face predicted by the finite element simulations, tool wear can be estimated. This paper features a specific study of the application of solid lubricant coatings in machining operations and presents its influence on tool-workpiece contact temperature and tool wear resistance. In the present work, finite element modeling approach concerning orthogonal cutting was carried out in order to understand the machining process performance in terms of tool wear during turning of selected workmaterial with and without solid lubricant (molybdenum disulphide, MoS2) coated tools produced by electrostatic micro-solid lubricant coating technique. Finite element code, DEFORM-3D is utilized to predict the tool wear during machining of workmaterial under two machining environments. The results under similar tested machining conditions show that flank wear resistance was improved remarkably during machining with MoS2 coated tools when compared to machining with uncoated tools. This could be mainly due to the presence of MoS2 film on tool face, which can reduce the cutting temperatures effectively owing to its excellent lubricity action and result in lower specific cutting energy given into the contact. For experimental validation, series of turning tests were carried out under selected conditions. It has been observed from the simulation studies that the tool wear results are in reasonable agreement with the experimental results.

2015 ◽  
Vol 651-653 ◽  
pp. 1229-1234
Author(s):  
Mikel Sáez-de-Buruaga ◽  
Ibon Poveda ◽  
Pedro José Arrazola

The microstructure of materials has a significant influence on tool life, however most of the research in modelling to date considers the material as homogeneous. This research aims to develop a microstructure-based Finite Element Model in order to qualitatively analyze the influence of the scale of the microstructure on the generated tool wear. In particular, this paper is focused on the orthogonal cutting process of a ferrite-pearlite dual-phase steel using uncoated carbide tools. Based on individual mechanical properties of these phases, a 3D coupled Eulerian Lagrangian heterogeneous model was developed. An empirical tool wear rate prediction model was implemented by a user subroutine in both models (heterogeneous and homogeneous) to predict wear and wear rate values. A comparison between the microstructure-base model (heterogeneous) and the homogeneous model considering wear and wear rate values was made. The results demonstrate the validity of microstructure-based Finite Element Model for an improved prediction of the wear phenomena.


2021 ◽  
Vol 11 (11) ◽  
pp. 4743
Author(s):  
Fernando Cepero-Mejias ◽  
Nicolas Duboust ◽  
Vaibhav A. Phadnis ◽  
Kevin Kerrigan ◽  
Jose L. Curiel-Sosa

Nowadays, the development of robust finite element models is vital to research cost-effectively the optimal cutting parameters of a composite machining process. However, various factors, such as the high computational cost or the complicated nature of the interaction between the workpiece and the cutting tool significantly hinder the modelling of these types of processes. For these reasons, the numerical study of common machining operations, especially in composite machining, is still minimal. This paper presents a novel approach comprising a mixed multidirectional composite damage mode with composite edge trimming operation. An ingenious finite element framework which infer the cutting edge tool wear assessing the incremental change of the machining forces is developed. This information is essential to replace tool inserts before the tool wear could cause severe damage in the machined parts. Two unidirectional carbon fibre specimens with fibre orientations of 45∘ and 90∘ manufactured by pre-preg layup and cured in an autoclave were tested. Excellent machining force predictions were obtained with errors below 10% from the experimental trials. A consistent 2D FE composite damage model previously performed in composite machining was implemented to mimic the material failure during the machining process. The simulation of the spring back effect was shown to notably increase the accuracy of the numerical predictions in comparison to similar investigations. Global cutting forces simulated were analysed together with the cutting tool tooth forces to extract interesting conclusions regarding the forces received by the spindle axis and the cutting tool tooth, respectively. In general terms, vertical and normal forces steadily increase with tool wear, while tangential to the cutting tool, tooth and horizontal machining forces do not undergo a notable variation.


2014 ◽  
Vol 621 ◽  
pp. 611-616 ◽  
Author(s):  
Yan Juan Hu ◽  
Yao Wang ◽  
Zhan Li Wang

In order to study the temperature field distribution in the process of machining, the finite element theory was used to establish the orthogonal cutting finite element model, and the key technologies were discussed simultaneously. By using ABAQUS software for cutting AISI1045 steel temperature field of numerical simulation, the conclusion about changing rule of cutting temperature field can be gotten. The results show that this method can efficiently simulate the distribution of temperature field of the workpiece, cutter and scraps, which is effected by thermo-mechanical coupling in metal work process. It provides the theory evidence for the intensive study of metal-cutting principle, optimizing cutting parameters and improving processing technic and so on.


2013 ◽  
Vol 554-557 ◽  
pp. 2093-2100 ◽  
Author(s):  
Domenico Umbrello

Machining of advancedaerospace materials have grown in the recent years although the hard-to-machinecharacteristics of alloys like titanium or nickel based alloys cause highercutting forces, rapid tool wear, and more heat generation. This paper presentsan experimental evaluation of machining ofInconel718alloy under dry conditions at varying of cutting speeds and feed rates.The influence of the cutting conditions on surface integrity was studied interms of surface roughness, affected layer, grain size variations and phasechanges/modification. Also, the machining process performance was evaluatedthrough the power consumption and tool-wear.


2012 ◽  
Vol 505 ◽  
pp. 31-36 ◽  
Author(s):  
Moaz H. Ali ◽  
Basim A. Khidhir ◽  
Bashir Mohamed ◽  
A.A. Oshkour

Titanium alloys are desirable materials for aerospace industry because of their excellent combination of high specific strength, lightweight, fracture resistant characteristics, and general corrosion resistance. Therefore, the chip morphology is very important in the study of machinability of metals as well as the study of cutting tool wear. The chips are generally classified into four groups: continuous chips, chips with built-up-edges (BUE), discontinuous chips and serrated chips. . The chip morphology and segmentation play a predominant role in determining machinability and tool wear during the machining process. The mechanics of segmented chip formation during orthogonal cutting of titanium alloy Ti–6Al–4V are studied in detail with the aid of high-speed imaging of the chip formation zone. The finite element model of chip formation of Ti–6Al–4V is suggested as a discontinuous type chip at lower cutting speeds developing into a continuous, but segmented, chip at higher cutting speeds. The prediction by using finite-element modeling method and simulation process in machining while create chips formation can contribute in reducing the cost of manufacturing in terms of prolongs the cutting tool life and machining time saving.


2011 ◽  
Vol 308-310 ◽  
pp. 1465-1470
Author(s):  
Guo Chen Du ◽  
Ying Chen ◽  
Jin Feng Zhang ◽  
Zhi Zhen Wei

The results reported in this paper pertain to the simulation of high speed hard turning when using the finite element method. In recent years high speed hard turning has emerged as a very advantageous machining process for cutting hardened steels. Among the advantages of this modern turning operation are final product quality, reduced machining time, lower cost and environmentally friendly characteristics. For the finite element modelling a commercial programme, namely the Third Wave Systems AdvantEdge, was used. This programme is specially designed for simulating cutting operations, offering to the user many designing and analysis tools. In the present analysis orthogonal cutting models are proposed, taking several processing parameters into account; the models are validated with experimental results from the relevant literature and discussed. Additionally, oblique cutting models of high speed hard turning are constructed and discussed. From the reported results useful conclusions may be drawn and it can be stated that the proposed models can be used for industrial application.


2014 ◽  
Vol 611-612 ◽  
pp. 1210-1216 ◽  
Author(s):  
Farshid Jafarian ◽  
Mikel Imaz Ciaran ◽  
Pedro José Arrazola ◽  
Luigino Filice ◽  
Domenico Umbrello ◽  
...  

Inconel 718 superalloy is one of the difficult-to-machine materials which is employed widely in aerospace industries because of its superior properties such as heat-resistance, high melting temperature, and maintenance of strength and hardness at high temperatures. Material behavior of the Inconel 718 is an important challenge during finite element simulation of the machining process because of the mentioned properties. In this regard, various constants for Johnson–Cook’s constitutive equation have been reported in the literature. Owing to the fact that simulation of machining process is very sensitive to the material model, in this study the effect of different flow stresses were investigated on outputs of the orthogonal cutting process of Inconel 718 alloy. For each model, the predicted results of cutting forces, chip geometry and temperature were compared with experimental results of the previous work at the different feed rates. After comparing the results of the different models, the most suitable Johnson–Cook’s material model was indentified. Obtained results showed that the selected material model can be used reliably for machining simulation of Inconel 718 superalloy.


2012 ◽  
Vol 499 ◽  
pp. 208-212
Author(s):  
Ai Hua Gao ◽  
Fu Rong Wang ◽  
Jian Xin Zhang

The paper make the service life of relieving formed milling cutter as the optimization objective, proceed the simulation study on the mechanical degree of cutter, cutting data. The concrete method is that the orthogonal milling model is established to simulate the simulation milling process, some basic parameters which are obtained in the machining process are analyzed and discussed. The results indicate that the finite element simulation of the metal cutting processing can analyze quantitatively some physical properties, such as the cutting force, stress, strain and so on, the traditional way of qualitative analysis is changed. The state of machining is in favour of grasping in the theory, the theory and technology are provided to establish the proper processing technology strategy.


Sign in / Sign up

Export Citation Format

Share Document