Failure Mechanisms of Weld Bonded Lap Joints Between Composite/Metal Adherends
Weld-bonding, a combination of spot welding and adhesive bonding, is a primary method of joining the composite underbody to the steel body-in-white (BIW). This concept is provided by the Automotive Composites Consortium (ACC) to ensure the compatibility with the OEM assembly processes. This paper established the finite element model of the weld bonded lap joint based on the published specimen dimensions, and compared the ultimate load and failure mode with their experimental results. Their good agreements demonstrated the accuracy of the numerical model and simulation method. Using this model, the progressive failures within the joints were predicted under static tensile loading and impact loading, respectively. The impact resistant capability of this joint was evaluated and the load transfer path among the adhesives, welded spot, composite and HSS adherend was discussed. The influences of relative thickness and relative stiffness between the adhesives and the two adherends on the failure modes were studied numerically, and the map chart for failure mode prediction was provided for weld bonded lap joints of bi-materials adherends, which is helpful for engineering application.