Synthesis and Characterization of Conjugated-Polymer/Graphene/Nanodiamond Nanocomposite for Electrochemical Energy Storage

Author(s):  
Danny Illera Perozo ◽  
Humberto Gómez Vega ◽  
Julian Yepes Martínez

The synthesis and characterization of Polyaniline/Graphene/ Nanodiamond Nanocomposite is reported. The resulting materials were synthetized following a polymerization in situ scheme and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetry (TGA), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM) and Cyclic Voltammetry (CV). The effect of different loads of graphene and nanodiamond on the resulting nanocomposite was studied. Despite the presence of the host materials, the formation of Polyaniline polymer is successfully accomplished for all samples. The microstructure of the resulting materials is core-shell type with the additives being covered (core) by layers of the conjugated polymer (shell). The thermal stability of the nanocomposites is improved as confirmed by measuring an increase on the Temperature of Decomposition and the Cross-Linking Temperature compared to bare polymer. Electrochemical characterization reveals that the presence of the additives does not affect the electroactive behaviour of the matrix polymer allowing it to reversely shift from different oxidation stages. The effect of additive content on the charge transfer kinetics is discussed.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Emerson C. G. Campos ◽  
Cristiano Zanlorenzi ◽  
Bruno F. Nowacki ◽  
Gabriela M. Miranda ◽  
Denis A. Turchetti ◽  
...  

This work reports the synthesis and characterization of a conjugated polymer based on fluorene and terpyridine, namely, poly[(9,9-bis(3-((S)-2-methylbutylpropanoate))fluorene-alt-6,6′-(2,2′:6′,2′′-terpyridin-6-yl)] (LaPPS71). The structure was characterized by 1H and 13C nuclear magnetic resonance (NMR) and Fourier-transform infrared (FTIR) spectroscopy. The molar mass was measured by gel permeation chromatography (GPC). As thermal characterization, the glass transition temperature (Tg) was measured by differential scanning calorimetry (DSC). The polymer structure contains two sites capable of complexation with metallic ions, affording the possibility of obtainment of independent or electronically coupled properties, depending on the complexation site. The photophysical properties were fully explored in solution and solid state, presenting ideal results for the preparation of various metallopolymers, in addition to potential application as a metamaterial, due to the presence of the chiral center in the side chains of the polymer.


2000 ◽  
Vol 15 (7) ◽  
pp. 1617-1621 ◽  
Author(s):  
Jan Schroers ◽  
Konrad Samwer ◽  
Frigyes Szuecs ◽  
William L. Johnson

The reaction of the bulk glass forming alloy Zr41Ti14Cu12Ni10Be23 (Vit 1) with W, Ta, Mo, AlN, Al2O3, Si, graphite, and amorphous carbon was investigated. Vit 1 samples were melted and subsequently solidified after different processing times on discs of the different materials. Sessile drop examinations of the macroscopic wetting of Vit 1 on the discs as a function of temperature were carried out in situ with a digital optical camera. The reactions at the interfaces between the Vit 1 sample and the different disc materials were investigated with an electron microprobe. The structure and thermal stability of the processed Vit 1 samples were examined by x-ray diffraction and differential scanning calorimetry. The results are discussed in terms of possible applications for composite materials.


2011 ◽  
Vol 327 ◽  
pp. 115-119 ◽  
Author(s):  
Duo Wang ◽  
Jie Gao ◽  
Wei Fang Xu ◽  
Feng Bao ◽  
Rui Ma ◽  
...  

Graphene oxide (GO) was made by a modified Hummers method. Graphene oxide modified phenolic resin nanocomposites (GO/PF) were prepared by Steglich esterification, catalyzed by dicyclohexyl carbodiimide and 4-dimethylaminopyridine. The composites were characterized by Fourier transform infrared spectrometry, differential scanning calorimetry, X-ray powder diffraction, and scanning electron microscopy. The result revealed that the graphene oxide was absolutely exfoliated and covalent linked GO/PF composite was obtained. The thermal stability of PF is remarkably improved by modification with GO.


e-Polymers ◽  
2006 ◽  
Vol 6 (1) ◽  
Author(s):  
F. Delor-Jestin ◽  
N. S. Tomer ◽  
R.P. Singh ◽  
J. Lacoste

AbstractThe changes in the chemical structure and the physical properties of a filled crosslinked polydimethylsiloxane rubber were monitored as a function of various ageing factors. The variables included photochemical, thermal, salt-fog ageings and exposure to acid vapours. Unaged and aged samples were studied by IR spectroscopy, hardness measurements, Differential Scanning Calorimetry (DSC) and thermogravimetric analysis (TGA) coupled with IR spectroscopy. No significant oxidation was detected after all ageings, except for nitric acid treatment. The presence of aluminium trihydrate was clearly identified as responsible for the observed chemical changes. Then an important vulnerability of this filled silicone rubber towards the cross-linking reactions provoked by usual ageings was also detected. The DSC-thermoporosimetry measurements of the mesh size distribution gave a comparison of cross-linking densities for each ageing. The complementary analysis with TGAIR allowed us to differenciate the thermal stability of the formulation after various ageings and to acquire new knowledge about thermal decomposition.


2016 ◽  
Vol 71 (12) ◽  
pp. 1199-1209
Author(s):  
Vera A. Hartdegen ◽  
Maximilian S. Hofmayer ◽  
Konstantin Karaghiosoff ◽  
Thomas M. Klapötke

AbstractOn the basis of 1,2-bis(5-tetrazolo)ethane (BTE) the corresponding twofold vinyl and allyl N-substituted derivatives were synthesized using 1,2-dibromoethane and allyl bromide, respectively. The compounds were obtained as two different constitutional isomers. Both species were analyzed using NMR and IR spectroscopy, elemental analysis, as well as mass spectrometry. In the case of the diallyl bistetrazoles, the two isomers were characterized using 2D NMR spectroscopy. The synthesis of the divinyl compounds gave crystals of the 2,2′-N-substituted isomer, which were analyzed by single-crystal X-ray diffraction. The thermal stability of the compounds was determined using differential scanning calorimetry (DSC) and gave decomposition temperatures around 190°C and 230°C. For the investigation of the inherent energetic potential, sensitivities toward physical stimuli and detonation parameters were determined. The compounds turned out to be insensitive toward friction and impact and possess moderate energetic properties.


2011 ◽  
Vol 236-238 ◽  
pp. 2028-2031
Author(s):  
Bing Tao Wang ◽  
Yan Zhang ◽  
Zheng Ping Fang

Biodegradable aliphatic-aromatic copolyesters/POSS nanocomposites were synthesized via in situ melt copolycondensation of terephthalic acid (TPA), poly(L-lactic acid) oligomer (OLLA), 1,4-butanediol (BDO) and polyhedral oligomeric silsesquioxanes (POSS) reagents (POSS-NH2 and POSS-PEG). The morphologies and dispersions of two POSS reagents in the nanocomposites and their effects on the mechanical and thermal properties were investigated. TEM and XRD characterizations confirmed that POSS-NH2 formed crystalline microaggregates and took poor dispersions in the nanocomposite, while POSS-PEG had better dispersion in the matrix. Due to the good dispersion and interfacial adhesion of POSS-PEG with the copolyester PBTL matrix, the tensile strength and the Young’s modulus greatly increased for PBTL/POSS-PEG nanocomposite. Moreover, compared with POSS-NH2 the existence of POSS-PEG imparted PBTL good flexibility and increased the mobility of the chains, so the glass-transition temperature and the heat of melting as well as the elongation at break were obviously influenced for PBTL/POSS-PEG nanocomposite.


2011 ◽  
Vol 328-330 ◽  
pp. 1533-1536
Author(s):  
Guang Shuo Wang ◽  
Zhi Yong Wei ◽  
Lian Liu ◽  
Pei Wang ◽  
Min Qi

The novel biodegradable poly (ε-caprolactone)/TiO2 nanocomposites were prepared by in situ polymerization of ε-caprolactone in the presence of modified-TiO2 nanoparticles as initiator. The molecular weight of poly (ε-caprolactone) (PCL) matrix was dependent on the amount of the TiO2 fillers. The incorporation of TiO2 did not significantly affect the crystalline structure of PCL. An astounding nucleating effect of TiO2 on PCL crystallization was observed. The enhanced thermal stability of PCL nanocomposites was observed. The novel biodegradable poly (ε-caprolactone)/TiO2 nanocomposites were prepared by in situ polymerization of ε-caprolactone in the presence of modified-TiO2 nanoparticles as initiator. The molecular weight of poly (ε-caprolactone) (PCL) matrix was dependent on the amount of the TiO2 fillers. The incorporation of TiO2 did not significantly affect the crystalline structure of PCL. An astounding nucleating effect of TiO2 on PCL crystallization was observed. The enhanced thermal stability of PCL nanocomposites was observed.


Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 2967
Author(s):  
Ignazio Blanco ◽  
Francesco Agatino Bottino ◽  
Gianluca Cicala ◽  
Giulia Ognibene ◽  
Claudio Tosto

Novel polystyrene (PS)/polyhedral oligomeric silsequioxanes (POSSs) nanocomposites were designed and prepared by in situ polymerization, using, for the first time, three-cage POSS molecules. The synthesized compounds were first characterized by Fourier transform infrared spectroscopy (FTIR) and 1H NMR spectroscopy to verify the obtaining of the designed products before their thermal performance was evaluated and compared with those of pristine PS and the corresponding single-cage POSSs nanocomposites. The thermal behaviour was checked by the means of the differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) was also used to confirm the hypothesis about the dispersion/aggregation of the POSS molecules into the polymer matrix. The parameters chosen to evaluate the thermal stability of the investigated compounds, namely temperature at 5% of mass loss (T5%) and solid residue at 700 °C, showed a significant increase in the stability of the polymers reinforced with the three-cages POSS, in comparison to both PS and single-cage POSS reinforced PSs, which therefore turn out to be promising molecular fillers for nanocomposite production.


e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Abdel-Azim A. Abdel-Azim ◽  
A. Mahmoud Abdul-Raheim ◽  
Ayman Mohamady Atta ◽  
Witold Brostow ◽  
A. Fawzy El-Kafrawy

AbstractCinnamoyloxy ethyl methacrylate (CEMA) was copolymerized with different monomer feed ratios of octadecyl acrylate (ODA) and crosslinked using azobisisobutyronitrile (AIBN) as the initiator and N,N’,N”-trisacryloyl melanine (AM) or N,N’,N”,-trismethacryloylmelanine (MM) crosslinkers. The networks are characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). For crosslinked CEMA/ODA copolymer sol fraction values are lower when MM is used rather than AM. The thermal stability of crosslinked network increases with increasing ODA concentration and also in the presence of MM crosslinker, a consequence of higher crosslinking density. SEM results show a porous structure; micropores are formed when ODA contents increases. According to DMA results, the flexibility of the network is enhanced by incorporation of MM rather than AM. Since our crosslinked networks are both flexible and porous, they are applicable as oil sorber networks to alleviate pollution from oil spills.


2011 ◽  
Vol 311-313 ◽  
pp. 2075-2083
Author(s):  
Halidan Mamat

A novel cellulose-based oil absorbent crosslinked cellulose-dibutyl sebacate copolymers was prepared by the graft crosslinking polymerization of in situ synthesized dibutyl sebacate and cotton cellulose using potassium persulfate as an initiator. The copolymers were characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermogravimetry, differential scanning calorimetry, etc. The effects of reaction conditions, such as, ratio of reaction regents, reaction temperature, reaction time, etc, on the efficiency of oil absorbency were examined. The optimized reaction conditions for the synthesis of crosslinked cellulose-dibutyl sebacate copolymers were: m(cotton pulp):m(K2S2O8 initiator):m(dibutyl sebacate) = 1 0.025 2.0(W/W),75°C,and 5-6 h. The resulting crosslinked cellulose-dibutyl sebacate copolymers were floppy and exhibited excellent oil absorbency efficiency.


Sign in / Sign up

Export Citation Format

Share Document