scholarly journals Design, Preparation and Thermal Characterization of Polystyrene Composites Reinforced with Novel Three-Cages POSS Molecules

Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 2967
Author(s):  
Ignazio Blanco ◽  
Francesco Agatino Bottino ◽  
Gianluca Cicala ◽  
Giulia Ognibene ◽  
Claudio Tosto

Novel polystyrene (PS)/polyhedral oligomeric silsequioxanes (POSSs) nanocomposites were designed and prepared by in situ polymerization, using, for the first time, three-cage POSS molecules. The synthesized compounds were first characterized by Fourier transform infrared spectroscopy (FTIR) and 1H NMR spectroscopy to verify the obtaining of the designed products before their thermal performance was evaluated and compared with those of pristine PS and the corresponding single-cage POSSs nanocomposites. The thermal behaviour was checked by the means of the differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) was also used to confirm the hypothesis about the dispersion/aggregation of the POSS molecules into the polymer matrix. The parameters chosen to evaluate the thermal stability of the investigated compounds, namely temperature at 5% of mass loss (T5%) and solid residue at 700 °C, showed a significant increase in the stability of the polymers reinforced with the three-cages POSS, in comparison to both PS and single-cage POSS reinforced PSs, which therefore turn out to be promising molecular fillers for nanocomposite production.

2019 ◽  
pp. 089270571987822
Author(s):  
Saud Aldajah ◽  
Mohammad Y Al-Haik ◽  
Waseem Siddique ◽  
Mohammad M Kabir ◽  
Yousef Haik

This study reveals the enhancement of mechanical and thermal properties of maleic anhydride-grafted polypropylene (PP- g-MA) with the addition of nanocrystalline cellulose (NCC). A nanocomposite was manufactured by blending various percentages of PP, MA, and NCC nanoparticles by means of a twin-screw extruder. The influence of varying the percentages of NCC on the mechanical and thermal behavior of the nanocomposite was studied by performing three-point bending, nanoindentation, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy tests. The novelty of this study stems on the NCC nanoparticles and their ability to enhance the mechanical and thermal properties of PP. Three-point bending and nanoindentation tests revealed improvement in the mechanical properties in terms of strength, modulus, and hardness of the PP- g-MA nanocomposites as the addition of NCC increased. SEM showed homogeneity between the mixtures which proved the presence of interfacial adhesion between the PP- g-MA incorporated with NCC nanoparticles that was confirmed by the FTIR results. DSC and TGA measurements showed that the thermal stability of the nanocomposites was not compromised due to the addition of the coupling agent and reinforced nanoparticles.


2000 ◽  
Vol 15 (7) ◽  
pp. 1617-1621 ◽  
Author(s):  
Jan Schroers ◽  
Konrad Samwer ◽  
Frigyes Szuecs ◽  
William L. Johnson

The reaction of the bulk glass forming alloy Zr41Ti14Cu12Ni10Be23 (Vit 1) with W, Ta, Mo, AlN, Al2O3, Si, graphite, and amorphous carbon was investigated. Vit 1 samples were melted and subsequently solidified after different processing times on discs of the different materials. Sessile drop examinations of the macroscopic wetting of Vit 1 on the discs as a function of temperature were carried out in situ with a digital optical camera. The reactions at the interfaces between the Vit 1 sample and the different disc materials were investigated with an electron microprobe. The structure and thermal stability of the processed Vit 1 samples were examined by x-ray diffraction and differential scanning calorimetry. The results are discussed in terms of possible applications for composite materials.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1475 ◽  
Author(s):  
Abate ◽  
Bottino ◽  
Cicala ◽  
Chiacchio ◽  
Ognibene ◽  
...  

Two series of novel dumbbell-shaped polyhedral oligomeric silsesquioxanes (POSSs), fully functionalized with phenyl groups at the corner of the silicon cages, were used to prepare polystyrene (PS) nanocomposites through the method of in situ polymerization. The percentage of the molecular filler reinforcement was set as 5% w/w of POSS and was checked by 1H-NMR spectroscopy. The obtained nanocomposites were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Thermal and morphological properties were evaluated and compared among the nanocomposites obtained using the two different series of dumbbell-shaped POSSs and with the net PS. The thermal parameters for the prepared nanocomposites were very high when compared with those of neat PS, and they evidenced significant differences when an aliphatic or aromatic bridge was used to link the silicon cages. SEM analysis results allow us to hypothesize a justification for the different resistance to thermal degradation showed by the two series of molecular reinforcement.


2014 ◽  
Vol 904 ◽  
pp. 7-9
Author(s):  
Xiao Hua Gu ◽  
Xi Wei Zhang ◽  
Bao Yun Xu ◽  
Peng Zeng

In this paper, the diphenyl methane diisocyanate (MDI) was used to modify montmorillonoid (MMT) and got the organic montmorillonite (OMMT), which was used with the monomers of PET by in situ polymerization method to prepare PET/MMT nanocomposition. The OMMT was analyzed by the X ray diffraction (XRD) to test the change of the spacing layer. Dispersion of MMT in the PET/MMT nanocomposites were studied with XRD and SEM and by means of thermogravimetric analyzer (TGA) on the thermal stability of PET/MMT nanocomposites. The results showed that, MDI modified MMT successfully, and the compatibility of MMT and PET was increased .


2020 ◽  
Vol 32 (7) ◽  
pp. 1763-1767
Author(s):  
A. Chowdhury ◽  
S.K. Singh ◽  
P. Anthony

In the present study, unsaturated polyester resins based on castor oil was synthesized. Structure elucidation of the synthesized unsaturated polyester resin was done by FTIR and 1H NMR spectroscopy. Thermogravimetric analysis was used to evaluate the thermal stability of cured unsaturated polyester resin. Thermogram plot was further utilized to calculate various other parameters such as statistic heat-resistant index (Ts) and the integral procedural decomposition temperature (IPDT). Comparable properties with respect to commercial resins were reported for the synthesized polymers


2011 ◽  
Vol 399-401 ◽  
pp. 444-448 ◽  
Author(s):  
Jun Qian Mu ◽  
Yi Yang ◽  
Zhi Han Peng

In this paper, a novel flame retarded MCA-PA6 (PA6 incorporated with melamine cyanurate) resin was synthesized by in-situ polymerization. The synthetic product was characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM), Fourier transform infrared spectroscope (FTIR), thermogravimetry analysis (TG), differential scanning calorimetry (DSC) and elemental analysis. The result showed that good dispersability were obtained in MCA-based PA6 prepared successfully. Meanwhile, the maximum mass loss rate appeared at about 450 °C and the residual char increased from 1.2 wt% to 3.2 wt% at 500 °C due to the existence of MCA.This research revealed MCA-PA6 owned a good thermal stability, hence there was potential flame retardance.


Author(s):  
Danny Illera Perozo ◽  
Humberto Gómez Vega ◽  
Julian Yepes Martínez

The synthesis and characterization of Polyaniline/Graphene/ Nanodiamond Nanocomposite is reported. The resulting materials were synthetized following a polymerization in situ scheme and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetry (TGA), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM) and Cyclic Voltammetry (CV). The effect of different loads of graphene and nanodiamond on the resulting nanocomposite was studied. Despite the presence of the host materials, the formation of Polyaniline polymer is successfully accomplished for all samples. The microstructure of the resulting materials is core-shell type with the additives being covered (core) by layers of the conjugated polymer (shell). The thermal stability of the nanocomposites is improved as confirmed by measuring an increase on the Temperature of Decomposition and the Cross-Linking Temperature compared to bare polymer. Electrochemical characterization reveals that the presence of the additives does not affect the electroactive behaviour of the matrix polymer allowing it to reversely shift from different oxidation stages. The effect of additive content on the charge transfer kinetics is discussed.


e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Zhaobin Tang ◽  
Peng Liu ◽  
Jinshan Guo ◽  
Zhixing Su

AbstractNaturally occurring halloysite nanotubes (HNTs) with hollow nanotubular structures were used as a new type filler for polyhydroxyurethane. The polyhydroxyurethane/halloysite nanocomposites (PHU/HNTs) were prepared by the in-situ surface-initiated polymerization of a five-membered cyclic carbonate 2,2- bis[p-(1,3-dioxolan-2-one-4-yl-methoxy) phenyl] propane (B5CC) and hexa methylene diamine, from the surfaces of the aminopropyl halloysite nanotubes (APHNTs) for the first time. The percentage of grafting (PG %) and the grafting efficiency (GE %) of 41% and 23% were calculated from the results of the thermogravimetric analysis (TGA) and from the results of elemental analysis (EA) respectively after the free polyhydroxyurethane was washed off. The chemical grafting of the polymer was also confirmed using FTIR; the morphology of the silica nanotubes in the nanocomposite was examined by transmission electron microscope (TEM).


2009 ◽  
Vol 87 (1) ◽  
pp. 272-279 ◽  
Author(s):  
Tamer A Elbokl ◽  
Christian Detellier

The preparation and characterization of a kaolinite–methacrylamide intercalation compound was achieved by a guest-displacement method, the direct treatment of a dimethylsulfoxide (DMSO) pre-intercalate with an aqueous solution of methacrylamide under mild conditions, giving intercalation ratios up to 92% and an expansion of 0.53 nm of the interlayer space. The DMSO molecules were fully displaced from the interlayer space by methacrylamide. Only partial intercalation could be obtained with N-methylformamide (NMF) pre-intercalate. After intercalation, the monomer was thermally polymerized at 100 or 150 °C with various heating times. XRD, FTIR, 13C CP/MAS NMR, and thermogravimetric analysis confirmed that polymerization was partially achieved in the interlayer spaces, while the layered structure of kaolinite was maintained, constraining the polymer in an interlayer space of 0.57 nm in the c-direction. In good agreement with the TG data, elemental analysis gave a stoichiometry of Al2Si2O5(OH)4·(C4H7NO)0.52 for the thermally treated methacrylamide intercalate, corresponding to a ratio of one methacrylamide unit per two kaolinite structural units. The thermal stability of the methacrylamide intercalate was increased after thermal treatment and polymerization.Key words: kaolinite, intercalation, nanocomposites, aluminosilicates, layered materials, interlayer polymerization, poly(methacrylamide).


2011 ◽  
Vol 221 ◽  
pp. 316-320
Author(s):  
Hui Xia Feng ◽  
Gong Wei Fu ◽  
Yi Wang ◽  
Na Li Chen ◽  
Rui Chen Yang

Polyacrylonitrile-metal-O-montmorillonite nanocomposites were prepared by means of in situ polymerization. The Na-montmorillonite was modified by quaternary ammonium salt after the exchange of its interlayer cations with Ni2+. Infrared spectra and X-ray powder diffraction were employed to characterize the obtained polyacrylonitrile-metal-O-montmorillonite. The results of FTIR show that metal-O-montmorillonite has been concerned with the polymerization of PAN. The result of X-ray powder diffraction shows that the inserting of the acrylonitrile monomer can enlarge the interlayer space of montmorillonite. It is also shown that the polyacrylonitrile-metal-O- montmorillonite nanocomposites have been synthesized. The thermal stability of PAN /MMT is better than that of pure PAN.


Sign in / Sign up

Export Citation Format

Share Document