Hybrid Solar Desalination to Produce Fresh Water, Electrical Power With Energy Storage

2015 ◽  
Author(s):  
Gregory J. Kowalski ◽  
Mansour Zenouzi ◽  
Masoud Modaresifar

The numerical analysis of solar desalination processes in a unique tray was extended to include an RED device to produce electricity either during operation or using the stored concentrated salt mixture. The motivation for this using device was based on an exergy analysis and the second law efficiency. Previous analysis illustrated how the exergy analysis could be used to identify the irreversibilities in the system and indicated modifications to increase the performance of the tray design desalinator for the sensible energy content of the discharge. The exergy related to the higher concentration level of the discharge is now investigated for a RED device. These analyses are extended to investigate the potential of using the higher salinity of the out flowing brine to produce electrical energy by using the reversed electrodialysis (RED) process. The RED process which converts 70–80% of the change in Gibbs energy to electricity uses the concentrated brine to produce electrical power while the freshwater is being produced. The analysis demonstrates it is possible to produce a maximum electrical output of 0.32 kJ/kg for the expected concentration differences. Using the predicted mass flow over the day of 6 kg/(day m2) it is expected that one could produce approximately 1.9 kJ/(day m2) of electricity in addition to the freshwater production.

2016 ◽  
Vol 846 ◽  
pp. 36-41
Author(s):  
Babak Fakhim ◽  
Masud Behnia ◽  
Steven W. Armfield

In this paper, a numerical analysis of flow and temperature distribution of a small raised-floor data centre is conducted in order to evaluate the thermal performance of the data centre. The flow patterns and temperature profiles established leads to a detailed exergy analysis of the data centre, which results in better understanding of irreversibilities in room airspace. The impact of the rack location in the data centre room and the airflow direction through perforated tiles on the thermal performance of the data centre is investigated using first-law and second-law of thermodynamics.


2019 ◽  
Vol 157 ◽  
pp. 1071-1082 ◽  
Author(s):  
M. Bouzaid ◽  
O. Ansari ◽  
M. Taha-Janan ◽  
N. Mouhsin ◽  
M. Oubrek

1990 ◽  
Vol 112 (2) ◽  
pp. 130-135 ◽  
Author(s):  
S. K. Som ◽  
A. K. Mitra ◽  
S. P. Sengupta

A second law analysis has been developed for an evaporative atomized spray in a uniform parallel stream of hot gas. Using a discrete droplet evaporation model, an equation for entropy balance of a drop has been formulated to determine numerically the entropy generation histories of the evaporative spray. For the exergy analysis of the process, the rate of heat transfer and that of associated irreversibilities for complete evaporation of the spray have been calculated. A second law efficiency (ηII), defined as the ratio of the total exergy transferred to the sum of the total exergy transferred and exergy destroyed, is finally evaluated for various values of pertinent input parameters, namely, the initial Reynolds number (Rei = 2ρgVixi/μg) and the ratio of ambient to initial drop temperature (Θ∞′/Θi′).


2015 ◽  
Vol 787 ◽  
pp. 782-786 ◽  
Author(s):  
R. Prakash ◽  
D. Christopher ◽  
K. Kumarrathinam

The prime objective of this paper is to present the details of a thermoelectric waste heat energy recovery system for automobiles, more specifically, the surface heat available in the silencer. The key is to directly convert the surface heat energy from automotive waste heat to electrical energy using a thermoelectric generator, which is then regulated by a DC–DC Cuk converter to charge a battery using maximum power point tracking. Hence, the electrical power stored in the battery can be maximized. Also the other face of the TEG will remain cold. Hence the skin burn out accidents can be avoided. The experimental results demonstrate that the proposed system can work well under different working conditions, and is promising for automotive industry.


2021 ◽  
Vol 17 (2) ◽  
pp. 204-211
Author(s):  
Raheel Jawad ◽  
Rawaa Jawad ◽  
Zahraa Salman

In the present-day decade, the world has regarded an expansion in the use of non-linear loads. These a lot draw harmonic non-sinusoidal currents and voltages in the connection factor with the utility and distribute them with the useful resource of the overall performance of it. The propagation of these currents and voltages into the grids have an effect on the electricity constructions in addition to the one of various client equipment. As a result, the electrical strength notable has come to be critical trouble for each client and distributor of electrical power. Active electrical electricity filters have been proposed as environment splendid gear for electrical power pinnacle notch enchantment and reactive electrical strength compensation. Active Power Filters (APFs) have Flipped out to be a possible wish in mitigating the harmonics and reactive electrical electricity compensation in single-phase and three-phase AC electrical energy networks with Non-Linear Loads (NLLs). Conventionally, this paper applied Ant Colony Algorithm(ACO) for tuning PI and reduce Total Harmonic Distortion (THD). The result show reduces THD at 2.33%.


2017 ◽  
Vol 79 (5-2) ◽  
Author(s):  
Zul Hasrizal Bohari ◽  
Nur Asyhikin Azhari ◽  
Nuraina Nasuha Ab Rahman ◽  
Mohamad Faizal Baharom ◽  
Mohd Hafiz Jali ◽  
...  

Energy trending lately shown the need of new possible renewable energy. This paper studies about the capability and capacity generating of electricity by using Bio-electricity-Microbial Fuel Cell (Bio-MFC). Bio-MFC is the device that converts chemical energy to electrical energy by using microbes that exist in the sewage water. The energy contained in organic matter can be converted into useful electrical power. MFC can be operated by microbes that transfer electrons from anode to cathode for generating electricity. There are two major goals in this study. The first goal is to determine the performance characteristics of MFCs in this application. Specifically we investigate the relationship between the percentages of organic matter in a sample results in higher electricity production of MFCs power by that sample. As a result, the sewage (wastewater) chosen in the second series experiment because the sewage (wastewater) also produced the highest percentage of organic matter which is around 10%. Due to these, the higher percentage of organic matter corresponds to higher electricity production. The second goal is to determine the condition under which MFC work most efficiently to generating electricity. After get the best result of the combination for the electrode, which is combination of zinc and copper (900mV),the third series of experiments was coducted, that show the independent variable was in the ambient temperature. The reasons of these observations will be explained throughout the paper. The study proved that the electricity production of MFC can be increased by selecting the right condition of sample type, temperature and type of electrode. 


Author(s):  
Ali A. Dehghan ◽  
Mohammad H. Hosni ◽  
S. Hoda Shiryazdi

The thermal performance of a Thermosyphon Domestic Solar Water Heater (DSWH) with a vertical storage tank is investigated experimentally. The system is installed on a roof - top of a four person family house and its thermal characteristics is evaluated by means of carefully measuring the temperature distribution of water inside the storage tank, solar collector flow rate and its inlet and outlet temperatures as well as load/consumption outlet and inlet temperatures and the corresponding water flow rate under a realistic operating conditions. The measurements are conducted every hour starting from morning until late night on a daily basis and continued for about 120 days during August until November 2004. It is seen that thermal stratification is well established inside the tank from 11 AM until 10 PM especially during August to September enabling the tank to provide the necessary amount of hot water at an acceptable temperature. However, thermal stratification is observed to start degrading from mid-night until morning when there is no hot water supply from the collector and due to the diffusion of heat from the top hot water layers to the bottom cold region and conduction through tank’s wall. The thermal behavior of the storage tank is also assessed based on both energy and exergy analysis and its first and second law efficiencies are calculated. It is observed that the storage tank under study has an average first law efficiency of 47.8% and is able to supply the required amount of hot water at a proper temperature. The average second law efficiency of the storage tank is observed to be 28.7% and, although is less than its first low efficiency, but is high enough to ensure that the quality of the hot water supply is well preserved. The proper level of second law efficiency is due to the preservation of the thermal stratification inside the storage tank, leading to supply of hot water at highest possible temperature and hence highest possible energy potential. Experiments are also done for no-load conditions when the storage tank only interacts with the collector, without hot water withdrawal from the tank. It is seen that for no-load condition, thermal stratification continuously develops from morning until around 16 PM after which no noticeable changes in the temperature distribution inside the tank is observed.


2017 ◽  
Vol 77 (2) ◽  
pp. 364-374 ◽  
Author(s):  
Azize Ayol ◽  
Ozgun Tezer ◽  
Alim Gurgen

Abstract Sludges produced in biological wastewater treatment plants have rich organic materials in their characteristics. Recent research studies have focused on the energy recovery from sludge due to its high organic content. The gasification process is a thermal conversion technology transforming the chemical energy contained in a solid fuel into thermal energy and electricity. The produced syngas as a mixture of CO, CH4, H2 and other gases can be used to generate electrical energy. The gasification of yeast industry sludge has been experimentally evaluated in a pilot scale downdraft-type gasifier as a route towards the energy recovery. The gasifier has 20 kg biomass/h fuel capacity. During gasification, the temperature achieved was more than 1,000°C in the gasifier, and then the syngas was transferred to the gas engine to yield the electricity. A load was connected to the grid box and approximately 1 kWh electrical power generation for 1 kg dry sludge was determined. The characteristics of residuals – ash, glassy material – were also analyzed. It was found that most of the heavy metals were fixed in the glassy material. Experimental results showed that the yeast industry sludge was an appropriate material for gasification studies and remarkable energy recovery was obtained in terms of power production by using syngas.


Author(s):  
Emanuele Frontoni ◽  
Adriano Mancini ◽  
Primo Zingaretti ◽  
Andrea Gatto

Advanced technical developments have increased the efficiency of devices in capturing trace amounts of energy from the environment (such as from human movements) and transforming them into electrical energy (e.g., to instantly charge mobile devices). In addition, advancements in microprocessor technology have increased power efficiency, effectively reducing power consumption requirements. In combination, these developments have sparked interest in the engineering community to develop more and more applications that utilize energy harvesting for power. The approach here described aims to designing and manufacturing an innovative easy-to-use and general-purpose device for energy harvesting in general purpose shoes. The novelty of this device is the integration of polymer and ceramic piezomaterials accomplished by injection molding. In this spirit, this paper examines different devices that can be built into a shoe, (where excess energy is readily harvested) and used for generating electrical power while walking. A Main purpose is the development of an indoor localization system embedded in shoes that periodically broadcasts a digital RFID as the bearer walks. Results are encouraging and real life test are conducted on the first series of prototypes.


2018 ◽  
Vol 67 ◽  
pp. 04011
Author(s):  
Sunaryo Sunaryo ◽  
Adri Wirawan Ramadhani

Indonesia has more than 17,000 islands and has plenty of beautiful beaches and underwater spots which have great potential for maritime tourism. Tourism was ranked 3rd on Indonesia's foreign income and plays an important role for the country’s ecomony. Despite having potential advantages, the government has not yet maximized its efforts to develop the attractiveness of its maritime tourism. Beside the beautiful spots Indonesia is also blessed with all year long sun shine, which could be tapped as renewable and green energy as substitution to fossil fuel. Refer to these great advantages of natural resources the research was aimed to support the government’s program in developing its maritime tourism and to promote the use of green and renewable energy by designing a solar-powered tourism recreational boat which has 12 meters of length. The paper is focused on the design of solar energy and its electrical system, which includes conversion of solar energy to electrical energy and store it in the battery, the required electrical power is also predicted based on the appliances and equipment installed in the boat, the optimum attachment of solar panels on the boat structure is also calculated. All the methods and information we use are obtained from literature study, discussion with experts, and surveys to Jagur as solar-powered electric boat from Universitas Indonesia.


Sign in / Sign up

Export Citation Format

Share Document