The Contact Dynamic Modeling and Analysis Based on Spline Assembly Feature Information

Author(s):  
Yu Wang ◽  
Shouwen Yao ◽  
Qingdong Yan ◽  
Jilin Liu ◽  
Qinghua Zhang

Generally, there is clearance between internal and external spline for the convenience of assembly. Because of the error caused by the process of production and assembly, the clearance is not consistent. This causes nonuniformity of load distribution among spline teeth, which reduce the service life of spline and influence the quality of transmission. In order to analyze these phenomenon, a contact dynamic model based on spline assembly feature is presented. Here, an information model called spline assembly feature, which contains the information of dimension, tolerance and material, is established. Based on Dimensional and Geometrical Product Specification and Verification (GPS), the deviation of minor diameter face and tooth flank is calculated, and the specification surface model is generated based on Small Displacement Theory (SDT). The contact situation of spline engagement is analyzed. With the use of collision algorithm, actual contact state is simulated and the penetration depth of contact zone is obtained. Material mechanics analysis is performed to acquire the rigidity of teeth meshing. With the work above, a multi-rigid dynamic model of spline is established based on continuous contact force theory and Hertz contact theory. Two indexes are introduced to evaluate the nonuniformity of load on spline teeth under stable condition and impact condition. Results show that the model is more accurately to predict dynamic performance.

2020 ◽  
Author(s):  
Ziya Özkan ◽  
Ahmet Masum Hava

In three-phase three-wire (3P3W) voltage-source converter (VSC) systems, utilization of filter inductors with deep saturation characteristics is often advantageous due to the improved size, cost, and efficiency. However, with the use of conventional synchronous frame current control (CSCC) methods, the inductor saturation results in significant dynamic performance loss and poor steady-state current waveform quality. This paper proposes an inverse dynamic model based compensation (IDMBC) method to overcome these performance issues. Accordingly, a review of inductor saturation and core materials is performed, and the motivation on the use of saturable inductors is clarified. Then, two-phase exact modelling of the 3P3W VSC control system is obtained and the drawbacks of CSCC have been demonstrated analytically. Based on the exact modelling, the inverse system dynamic model of the nonlinear system is obtained and employed such that the nonlinear plant is converted to a fictitious linear inductor system for linear current regulators to perform satisfactorily.


Author(s):  
Zhihua Niu ◽  
Sun Jin ◽  
Rongrong Wang ◽  
Yansong Zhang

Dynamic analysis is an essential task in the geometry design of suspension systems. Whereas the dynamic simulation based on numerical software like Adams is quite slowly and the existing analytical models of the nonlinear suspension geometry are mostly based on small displacement hypothesis, this paper aims to propose a whole-range dynamic model with high computational efficiency for planar double wishbone suspensions and further achieve the fast optimal design of suspension geometry. Selection of the new generalized coordinate and explicit solutions of the basic four-bar mechanism dramatically reduce the complexity of suspension geometry representation and provide analytical solutions for all of the time varying dimensions. By this means, the running speed and computational accuracy of the new model are guaranteed simultaneously. Furthermore, an original Matlab/Simulink implementation is given to maintain the geometric nonlinearity in the solving process of dynamic differential equations. After verifying its accuracy with an ADAMS prototype, the presented whole-range model is used in the vast-parameter optimization of suspension geometry. Since both kinematic and dynamic performances are evaluated in the objective function, the optimization is qualified to give a comprehensive suggestion to the design of suspension geometry.


2021 ◽  
Vol 9 (8) ◽  
pp. 812
Author(s):  
Lin Hong ◽  
Renjie Fang ◽  
Xiaotian Cai ◽  
Xin Wang

This paper conducts a numerical investigation on the hydrodynamic performance of a portable autonomous underwater vehicle (AUV). The portable AUV is designed to cruise and perform some tasks autonomously in the underwater world. However, its dynamic performance is strongly affected by hydrodynamic effects. Therefore, it is crucial to investigate the hydrodynamic performance of the portable AUV for its accurate dynamic modeling and control. In this work, based on the designed portable AUV, a comprehensive hydrodynamic performance investigation was conducted by adopting the computational fluid dynamics (CFD) method. Firstly, the mechanical structure of the portable AUV was briefly introduced, and the dynamic model of the AUV, including the hydrodynamic term, was established. Then, the unknown hydrodynamic coefficients in the dynamic model were estimated through the towing experiment and the plane-motion-mechanism (PMM) experiment simulation. In addition, considering that the portable AUV was affected by wave forces when cruising near the water surface, the influence of surface waves on the hydrodynamic performance of the AUV under different wave conditions and submerged depths was analyzed. Finally, the effectiveness of our method was verified by experiments on the standard models, and a physical experiment platform was built in this work to facilitate hydrodynamic performance investigations of some portable small-size AUVs.


2020 ◽  
Vol 8 (6) ◽  
pp. 5402-5411

The idea of DC-DC converter with multi-input is yet to attain a vital role in the field of 'hybrid energy system (HES)' integration and electric vehicle applications. So, the analysis of the dynamic behavior of the multi input converters is crucial in designing a proper controller to achieve a stable performance. This paper reports a 'small signal model (SSM)' and the performance analysis of a 'dual-input DC-DC converter (DIC)'. The parasitic resistances of capacitor and inductor are considered in the modelling. The significant transfer function (TF)s are derived with the help of the SSM, and the Bode plots for the TFs have been obtained. The performance analysis shows that the derived TFs allow better closed loop performance of the system. The simulation of the DIC converter in MATLAB/ Simulink® has been carried out and the simulation waveforms are presented. A hardware setup of the DIC converter is fabricated and experimented in the laboratory. The dynamic performance of the DIC is analyzed under the variations in the source and load conditions. The presented converter with a closed loop controller can be used in the applications to formulate a HES with solar-PV, battery, fuel cell, etc. Also the performance comparison of the DIC converter has been performed with other reported converters which shows that the DIC converter has higher efficiency and several other potential merits.


2011 ◽  
Vol 199-200 ◽  
pp. 19-24
Author(s):  
Jin Fu Zhang

In order to investigate dynamic performance of flexible multi-link manipulators more exactly, establishing the dynamic model with accounting for link foreshortening and link material damping is needed. In this paper, a new dynamic model for planar flexible multi-link manipulators is established by using Lagrange approach. Both link foreshortening and link material damping are accounted for in this model. As a case simulation, this model is applied to a planar flexible two-link manipulator with a tip mass, and the motion responses of the manipulator are obtained using Gear method.


Author(s):  
Santino J. Bianco ◽  
Christine T. Chevalier ◽  
Jonathan Litt ◽  
Joshua K. Smith ◽  
Jeffryes W. Chapman ◽  
...  

Abstract The Side-by-Side (SBS) Hybrid is one of several Revolutionary Vertical Lift Technology (RVLT) concept aircraft identified by NASA to investigate Urban Air Mobility (UAM) requirements. This paper presents a dynamic model of the SBS Hybrid powertrain built using the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) and the Electrical Modeling and Thermal Analysis Toolbox (EMTAT). The model consists of the rotors, electrical power system, and turboshaft engines connected through freewheeling clutches, gearboxes, and multiple shafts. This research effort models the complex behavior of the powertrain, including the operation of the freewheeling clutches and electrical power system at the simulation time scale of the shaft dynamics. Several simulations highlight the key features present in the model and demonstrate its operation.


2016 ◽  
Vol 693 ◽  
pp. 364-372
Author(s):  
Tao He ◽  
Cao Feng Yu ◽  
Xiao Lei Wu ◽  
Hai Shun Deng

This research is focused on dynamic performance of water hydraulic single hydraulic prop, the mathematical and AMESim model of single hydraulic prop are established. And the drop hammer is introduced to simulate the impact load of the surrounding rock acting on the prop. The performance parameters of prop retract displacement and cavity pressure are used as the research objects. The working process of single hydraulic prop is reproduced by the simulation. And the influence of safety valve parameters on the support system is analyzed. The results show that: increasing maximal valve core stroke and dead volume or reducing valve damping hole diameter can improve the support performance of the single hydraulic prop. But the influence of equivalent damping has two sides. For support system, decrease damping can improve the support performance, but for the safety valve, reduce the damping make the valve core stability decline. In addition, the pressure overshoot of the optimized system is 18.3%, adjusting time is 0.5s and the retract displacement is 10mm. The dynamic performances meet the technology requirements of the coal mine safety production of China.


Author(s):  
Yue-Qing Yu ◽  
Qian Li ◽  
Qi-Ping Xu

An intensive study on the dynamic modeling and analysis of compliant mechanisms is presented in this paper based on the pseudo-rigid-body model. The pseudo-rigid-body dynamic model with single degree-of-freedom is proposed at first and the dynamic equation of the 1R pseudo-rigid-body dynamic model for a flexural beam is presented briefly. The pseudo-rigid-body dynamic models with multi-degrees-of-freedom are then derived in detail. The dynamic equations of the 2R pseudo-rigid-body dynamic model and 3R pseudo-rigid-body dynamic model for the flexural beams are obtained using Lagrange equation. Numerical investigations on the natural frequencies and dynamic responses of the three pseudo-rigid-body dynamic models are made. The effectiveness and superiority of the pseudo-rigid-body dynamic model has been shown by comparing with the finite element analysis method. An example of a compliant parallel-guiding mechanism is presented to investigate the dynamic behavior of the mechanism using the 2R pseudo-rigid-body dynamic model.


Author(s):  
Sayyed Hossein Edjtahed ◽  
Amir Hossein Pir Zadeh ◽  
Abolfazl Halavaei Niasar

The hysteresis motor is a well-known synchronous motor that is used in special small power, high speed applications. Dynamic modeling and analysis of this motor is more complicated than permanent magnet synchronous motors (PMSMs) or induction motors (IMs) due to nonlinear behavior of rotor magnetic material. Short over-excitation is a unique phenomenon that only occurs in hysteresis motor in which the terminal voltage increase at synchronous speed for a short duration, and then continuously is decrease to initial value. Therefore, the input current is reduced, this leads to more power factor and efficiency enhancement. Till now, there isn’t any analytic dynamic model of this phenomenon. In this paper, based on a novel dynamic model of hysteresis motor, the over-excitation phenomenon is investigated and transient performance of the motor during over-excitation is simulated via Simulink.


Sign in / Sign up

Export Citation Format

Share Document