A Numerical Study on Highly Viscous Compound Cancer Cell Microfiltration

Author(s):  
Xiaolong Zhang ◽  
Xiaolin Chen ◽  
Hua Tan

Cancer is a leading cause of death worldwide. There has been extensive research on cancer in recent decades, with many studies focusing on Circulating Tumor Cells (CTCs), i.e., cancer cells shed into the circulating bloodstream from a primary tumor site. CTCs are mainly responsible for initiating metastases, and can be used as an indicator for early cancer detection. Investigating CTCs and the related detection methods such as microfiltration is of great importance. CTCs as well as other cells are normally composed of highly viscous nucleus and cytoplasm which are encapsulated by the outermost layer of cortical membrane. In order to account for the effects of viscous nucleus and cytoplasm on the microfiltration process and study the dynamic characteristics comprehensively, a realistic model is preferred. In this research, we employ the compound droplet model consisting of three layers, the layer of cell membrane, cytoplasm and nucleus, to capture the full range of CTCs behavior during the microfiltration process. The compound cell deformation and pressure signature during microfiltration are studied numerically. Also discussed are the effects of nucleus-cytoplasm ratio (N/C ratio), their viscosity as well as surface tension on the cell behavior when it squeezing through the filter channel. Our results can gain insight into the physics behind the filtering process and provide some guidance to the design and optimization of such devices.

2006 ◽  
Vol 84 (4) ◽  
pp. 253-271 ◽  
Author(s):  
M Hossein Partovi ◽  
Eliza J Morris

The popular demonstration involving a permanent magnet falling through a conducting pipe is treated as an axially symmetric boundary-value problem. Specifically, Maxwell's equations are solved for an axially symmetric magnet moving coaxially inside an infinitely long, conducting cylindrical shell of arbitrary thickness at nonrelativistic speeds. Analytic solutions for the fields are developed and used to derive the resulting drag force acting on the magnet in integral form. This treatment represents a significant improvement over existing models, which idealize the problem as a point dipole moving slowly inside a pipe of negligible thickness. It also provides a rigorous study of eddy currents under a broad range of conditions, and can be used for magnetic braking applications. The case of a uniformly magnetized cylindrical magnet is considered in detail, and a comprehensive analytical and numerical study of the properties of the drag force is presented for this geometry. Various limiting cases of interest involving the shape and speed of the magnet and the full range of conductivity and magnetic behavior of the pipe material are investigated and corresponding asymptotic formulas are developed.PACS Nos.: 81.70.Ex, 41.20.–q, 41.20.Gz


2009 ◽  
Vol 15 (6) ◽  
pp. 462-469 ◽  
Author(s):  
David Reiss ◽  
Gabriel Kirtchuk

SummaryAnalysing interpersonal dynamics is an approach through which the multidisciplinary team can develop a shared understanding of their patients. This empirically based method provides an insight into repeated patterns of dysfunctional behaviour, which not only have been evident in the past, but are currently having an impact on the patient's relationships with caring staff. The technique is accessible to any team member with only minimal training required. It provides the team with a coherent map of the patient's relationship patterns that underpins the formulation of an effective strategy for care. The multidisciplinary team is then able to work towards shared goals, supporting all members in their provision of effective interventions within the full range of therapeutic modalities. The approach promotes positive staff–patient interactions and provides an additional dimension to the assessment and management of risk.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Jiang Wu ◽  
Yanju Ji ◽  
Ling Zhao ◽  
Mengying Ji ◽  
Zhuang Ye ◽  
...  

Background. Surfaced-enhanced laser desorption-ionization-time of flight mass spectrometry (SELDI-TOF-MS) technology plays an important role in the early diagnosis of ovarian cancer. However, the raw MS data is highly dimensional and redundant. Therefore, it is necessary to study rapid and accurate detection methods from the massive MS data.Methods. The clinical data set used in the experiments for early cancer detection consisted of 216 SELDI-TOF-MS samples. An MS analysis method based on probabilistic principal components analysis (PPCA) and support vector machine (SVM) was proposed and applied to the ovarian cancer early classification in the data set. Additionally, by the same data set, we also established a traditional PCA-SVM model. Finally we compared the two models in detection accuracy, specificity, and sensitivity.Results. Using independent training and testing experiments 10 times to evaluate the ovarian cancer detection models, the average prediction accuracy, sensitivity, and specificity of the PCA-SVM model were 83.34%, 82.70%, and 83.88%, respectively. In contrast, those of the PPCA-SVM model were 90.80%, 92.98%, and 88.97%, respectively.Conclusions. The PPCA-SVM model had better detection performance. And the model combined with the SELDI-TOF-MS technology had a prospect in early clinical detection and diagnosis of ovarian cancer.


Author(s):  
Alan W. Brown ◽  
David J. Carney ◽  
Edwin J. Morris ◽  
Dennis B. Smith ◽  
Paul F. Zarrella

A central theme of this book is the three-level approach to CASE environment design and construction that distinguishes conceptual issues (the services) from implementation issues (the mechanisms) and stresses the need for a design context (the process) that the CASE environment must support. Previous chapters have discussed this theme, as well as provided insight into a conceptual model that identifies and classifies the services that might be found in a CASE environment. However, regardless of the service model or conceptual approach selected, environment builders must eventually face the bottom-line decision of how to actually carry out tool integration. The choices they face in terms of potential mechanisms are numerous and include a full range of selections that provide varying degrees of effort and integrated capability. In this chapter, we first consider the properties of integration by continuing the discussion of integration as a relationship (see Section 2.2). In this discussion (Section 5.2), we highlight properties that are addressed by various integration mechanisms. Later sections of this chapter focus on the specific relationship between two particular classes of integrating mechanisms: those based on the sharing or transfer of data between tools (data integration), and those based on synchronization and communication between tools (control integration). In Section 2.2 we introduced the concept put forward by Thomas and Nejmeh that integration can be considered by defining the properties required of the relationships between different environment components. Their definition of integration is exclusively a conceptual view, and is independent of the particular technology being used to implement that integration.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 235 ◽  
Author(s):  
Samir Diab ◽  
Dimitrios I. Gerogiorgis

Progress in continuous flow chemistry over the past two decades has facilitated significant developments in the flow synthesis of a wide variety of Active Pharmaceutical Ingredients (APIs), the foundation of Continuous Pharmaceutical Manufacturing (CPM), which has gained interest for its potential to reduce material usage, energy and costs and the ability to access novel processing windows that would be otherwise hazardous if operated via traditional batch techniques. Design space investigation of manufacturing processes is a useful task in elucidating attainable regions of process performance and product quality attributes that can allow insight into process design and optimization prior to costly experimental campaigns and pilot plant studies. This study discusses recent demonstrations from the literature on design space investigation and visualization for continuous API production and highlights attainable regions of recoveries, material efficiencies, flowsheet complexity and cost components for upstream (reaction + separation) via modeling, simulation and nonlinear optimization, providing insight into optimal CPM operation.


2017 ◽  
Vol 5 (8) ◽  
pp. 3948-3965 ◽  
Author(s):  
Shi-Chao Qi ◽  
Lu Zhang ◽  
Hisahiro Einaga ◽  
Shinji Kudo ◽  
Koyo Norinaga ◽  
...  

A type of nano-sized Ni catalyst supported by ZSM-5 zeolite for the deep hydrogenation of lignin monomers is prepared by borohydride reduction of a Ni2+–pyridine complex in ethanol. The mechanism of the borohydride reduction over the full range from Ni2+ to Ni0 is calculated by applying density functional theory.


2018 ◽  
Vol 146 (8) ◽  
pp. 2579-2598 ◽  
Author(s):  
Kevin J. Tory ◽  
William Thurston ◽  
Jeffrey D. Kepert

Abstract In favorable atmospheric conditions, fires can produce pyrocumulonimbus cloud (pyroCb) in the form of deep convective columns resembling conventional thunderstorms, which may be accompanied by strong inflow, dangerous downbursts, and lightning strikes that can produce dangerous changes in fire behavior. PyroCb formation conditions are not well understood and are difficult to forecast. This paper presents a theoretical study of the thermodynamics of fire plumes to better understand the influence of a range of factors on plume condensation. Plume gases are considered to be undiluted at the fire source and approach 100% dilution at the plume top (neutral buoyancy). Plume condensation height changes are considered for this full range of dilution and for a given set of factors that include environmental temperature and humidity, fire temperature, and fire-moisture-to-heat ratios. The condensation heights are calculated and plotted as saturation point (SP) curves on thermodynamic diagrams. The position and slope of the SP curves provide insight into how plume condensation is affected by the environment thermodynamics and ratios of fire heat to moisture production. Plume temperature traces from large-eddy model simulations added to the diagrams provide additional insight into plume condensation heights and plume buoyancy at condensation. SP curves added to a mixed layer lifting condensation level on standard thermodynamic diagrams can be used to identify the minimum plume condensation height and buoyancy required for deep, moist, free convection to develop, which will aid pyroCb prediction.


2001 ◽  
Vol 7 (3) ◽  
pp. 9 ◽  
Author(s):  
Murray J. N. Drummond ◽  
Tom A. Laws ◽  
Jelena Poljak-Fligic

Information surrounding the treatment of prostate cancer is not clearly defined by medical science. Consequently, health professionals are divided with respect to the most appropriate method of screening and detection. The assumption that if health professionals are not clear, what are the perceptions of Australian males in terms of prostate cancer detection and treatment options? Further, what does it mean to men from non-Australian cultures with language and cultural barriers impacting on choices and decisions relating to health? (Laws et al., 2000). This paper provides insight into the lives of 20 Italo-Australian men. It attempts to draw on their perceptions and understandings of prostate cancer and prostate cancer awareness from their unique perspectives. It will highlight some of the significant issues with respect to being an Italian born man living in Australia and how this impacts on health issues, and specifically prostate cancer awareness. The intention of this paper is to provide in-depth qualitative data to emphasise Italo-Australian men?s health perspectives and experiences.


Sign in / Sign up

Export Citation Format

Share Document