An Experimental Investigation of the Effects of Gamma Radiation on 3D Printed ABS for In-Space Manufacturing Purposes

Author(s):  
Behzad Rankouhi ◽  
Fereidoon Delfanian ◽  
Robert McTaggart ◽  
Todd Letcher

The following work is presented as a preliminary study on the effects of gamma irradiation on mechanical properties of Acrylonitrile Butadiene Styrene (ABS) as an in-space 3D printing feedstock to investigate the forthcoming possibilities of this technology for future space exploration missions. 3D printed testing samples were irradiated at different dosages from 1 to 1400 kGy (1 Gray (Gy) = 1 J/kg = 100 rad) using a Cobalt-60 gamma irradiator to simulate space radiation environment. Testing samples were manufactured using Fused Deposition Modeling (FDM) with a Makerbot Replicator 2x 3D printer. The correlation between the mechanical properties of irradiated samples and accumulated radiation dosage were evaluated by a series of tensile and flexural tests. Furthermore, Shore hardness tests were conducted to evaluate changes in surface hardness of irradiated parts. Finally, results were compared with a control group of samples. Findings showed a significant decrease in mechanical performance and noticeable changes in appearance of the parts with accumulated dosage of 1000 kGy and higher. However, for dosages below 10 kGy, samples showed no significant decrease in mechanical performance or change in appearance. These results were used to predict the life of a 3D printed part on board the International Space Station (ISS), on Low Earth Orbit (LEO) satellites, in deep space and long duration missions.

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 77
Author(s):  
Sasa Gao ◽  
Ruijuan Liu ◽  
Hua Xin ◽  
Haitao Liang ◽  
Yunfei Wang ◽  
...  

Additive manufacturing provides a novel and robust way to prepare medical product with anatomic matched geometry and tailored mechanical performance. In this study, the surface characteristics, microstructure, and mechanical properties of fused deposition modeling (FDM) prepared polyether-ether-ketone (PEEK) were systematically studied. During the FDM process, the crystal unit cell and thermal attribute of PEEK material remained unchanged, whereas the surface layer generally became more hydrophilic with an obvious reduction in surface hardness. Raster angle has a significant effect on the mechanical strength but not on the failure mechanism. In practice, FDM fabricated PEEK acted more like a laminate rather than a unified structure. Its main failure mechanism was correlated to the internal voids. The results show that horizontal infill orientation with 30° raster angle is promising for a better comprehensive mechanical performance, and the corresponding tensile, flexural, and shear strengths are (76.5 ± 1.4) MPa, (149.7 ± 3.0) MPa, and (55.5 ± 1.8) MPa, respectively. The findings of this study provide guidelines for FDM-PEEK to enable its realization in applications such as orthopedic implants.


Author(s):  
Matthew B. Ng ◽  
Sean N. Brennan

This paper investigates the thermal and radiation performance of 3D-printed ULTEM materials following ASTM standard D638. ULTEM is a thermoplastic in the polyetherimide (PEI) family that is regularly used as a high-grade material for 3D printing. This material has similar properties to polyether ether ketone (PEEK), which is another thermoplastic that has strong mechanical properties at elevated temperature conditions. While PEEK has stronger mechanical properties, ULTEM is significantly more cost efficient to acquire and process via 3D printing. Also, most 3D printers are unable to utilize PEEK because of the significantly higher temperature requirements this material imposes on a 3D printer. This work is motivated by the need to rapidly deploy robotic inspection systems within a nuclear canister environment, which exposes the material to temperatures up to 170°C (340°F), and radiation levels of 270 Gy/hr (27 krad/hr), which are significantly beyond that of conventional 3D-printed parts. The design analysis was performed via an experiment consisting of three treatment groups of dogbone ULTEM test pieces. After tensile testing all of the pieces, the material properties were compared to those of the control group. These results allow manufacturers to select a more cost-effective material to build parts to operate in such a harsh high-temperature, high-radiation environment, which could include applications in both space systems and nuclear inspection robotics. Specifically, the results were used to guide the development of a robust robotic inspection system for the Nuclear Energy University Program (NEUP) by replacing complex parts with easily-fabricated 3D-printed ULTEM pieces.


2020 ◽  
Vol 90 (21-22) ◽  
pp. 2399-2410 ◽  
Author(s):  
Shahbaj Kabir ◽  
Hyelim Kim ◽  
Sunhee Lee

This study has investigated the physical properties of 3D-printable shape memory thermoplastic polyurethane (SMTPU) filament and its 3D-printed sinusoidal pattern obtained by fused deposition modeling (FDM) technology. To investigate 3D filaments, thermoplastic polyurethane (TPU) and SMTPU filament were examined by conducting infrared spectroscopy, x-ray diffraction (XRD), dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and a tensile test. Then, to examine the 3D-printed sinusoidal samples, a sinusoidal pattern was developed and 3D-printed. Those samples went through a three-step heating process: (a) untreated state; (b) 5 min heating at 70°C, cooling for 30 min at room temperature; and (c) a repeat of step 2. The results obtained by the three different heating processes of the 3D-printed sinusoidal samples were examined by XRD, DMTA, DSC and the tensile test to obtain the effect of heating or annealing on the structural and mechanical properties. The results show significant changes in structure, crystallinity and thermal and mechanical properties of SMTPU 3D-printed samples due to the heating steps. XRD showed the increase in crystallinity with heating. In DMTA, storage modulus, loss modulus and the tan σ peak position also changed for various heating steps. The DSC result showed that the Tg for different steps of the SMTPU 3D-printed sample remained almost the same at around 51°C. The tensile property of the TPU 3D-printed sinusoidal sample decreased in terms of both load and elongation with increased heating processes, while for the SMTPU 3D-printed sinusoidal sample, the load decreased but elongation increased about 2.5 times.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1154 ◽  
Author(s):  
Wang ◽  
Zhao ◽  
Fuh ◽  
Lee

Additive manufacturing (commonly known as 3D printing) is defined as a family of technologies that deposit and consolidate materials to create a 3D object as opposed to subtractive manufacturing methodologies. Fused deposition modeling (FDM), one of the most popular additive manufacturing techniques, has demonstrated extensive applications in various industries such as medical prosthetics, automotive, and aeronautics. As a thermal process, FDM may introduce internal voids and pores into the fabricated thermoplastics, giving rise to potential reduction on the mechanical properties. This paper aims to investigate the effects of the microscopic pores on the mechanical properties of material fabricated by the FDM process via experiments and micromechanical modeling. More specifically, the three-dimensional microscopic details of the internal pores, such as size, shape, density, and spatial location were quantitatively characterized by X-ray computed tomography (XCT) and, subsequently, experiments were conducted to characterize the mechanical properties of the material. Based on the microscopic details of the pores characterized by XCT, a micromechanical model was proposed to predict the mechanical properties of the material as a function of the porosity (ratio of total volume of the pores over total volume of the material). The prediction results of the mechanical properties were found to be in agreement with the experimental data as well as the existing works. The proposed micromechanical model allows the future designers to predict the elastic properties of the 3D printed material based on the porosity from XCT results. This provides a possibility of saving the experimental cost on destructive testing.


2021 ◽  
Vol 6 (2) ◽  
pp. 119
Author(s):  
Nanang Ali Sutisna ◽  
Rakha Amrillah Fattah

The method of producing items through synchronously depositing material level by level, based on 3D digital models, is named Additive Manufacturing (AM) or 3D-printing. Amongs many AM methods, the Fused Deposition Modeling (FDM) technique along with PLA (Polylactic acid) material is commonly used in additive manufacturing. Until now, the mechanical properties of the AM components could not be calculated or estimated until they've been assembled and checked. In this work, a novel approach is suggested as to how the extrusion process affects the mechanical properties of the printed component to obtain how the parts can be manufactured or printed to achieve improved mechanical properties. This methodology is based on an experimental procedure in which the combination of parameters to achieve an optimal from a manufacturing experiment and its value can be determined, the results obtained show the effect of the extrusion process affects the mechanical properties.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 347 ◽  
Author(s):  
Shib Banerjee ◽  
Stephen Burbine ◽  
Nischay Kodihalli Shivaprakash ◽  
Joey Mead

Currently, material extrusion 3D printing (ME3DP) based on fused deposition modeling (FDM) is considered a highly adaptable and efficient additive manufacturing technique to develop components with complex geometries using computer-aided design. While the 3D printing process for a number of thermoplastic materials using FDM technology has been well demonstrated, there still exists a significant challenge to develop new polymeric materials compatible with ME3DP. The present work reports the development of ME3DP compatible thermoplastic elastomeric (TPE) materials from polypropylene (PP) and styrene-(ethylene-butylene)-styrene (SEBS) block copolymers using a straightforward blending approach, which enables the creation of tailorable materials. Properties of the 3D printed TPEs were compared with traditional injection molded samples. The tensile strength and Young’s modulus of the 3D printed sample were lower than the injection molded samples. However, no significant differences could be found in the melt rheological properties at higher frequency ranges or in the dynamic mechanical behavior. The phase morphologies of the 3D printed and injection molded TPEs were correlated with their respective properties. Reinforcing carbon black was used to increase the mechanical performance of the 3D printed TPE, and the balancing of thermoplastic elastomeric and mechanical properties were achieved at a lower carbon black loading. The preferential location of carbon black in the blend phases was theoretically predicted from wetting parameters. This study was made in order to get an insight to the relationship between morphology and properties of the ME3DP compatible PP/SEBS blends.


Author(s):  
Kamaljit Singh Boparai ◽  
Gurpartap Singh ◽  
Rupinder Singh ◽  
Sarabjit Singh

Abstract In this work, 3D printed master patterns of acrylonitrile butadiene styrene (ABS) thermoplastic material have been used for the preparation of Ni-Cr based functional prototypes as partial dentures (PD). The study started with patient specific three dimensional (3D), CAD data (fetched through scanning). This data was used for preparation of .STL file for printing of master patterns on fused deposition modeling (FDM) setup. The 3D printed master patterns were further wax coated to reduce the surface irregularities (as cost effective post processing technique). The hybrid patterns were subjected to investment casting for the preparation of Ni-Cr based PD. The finally prepared functional prototypes as PD were optimized for dimensional accuracy, surface finish and surface hardness as responses. The results are visualized and supported by photomicrographs and in-vitro analysis.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2792
Author(s):  
Mohammadreza Lalegani Dezaki ◽  
Mohd Khairol Anuar Mohd Ariffin

Fused deposition modeling (FDM) is commonly used to print different products with highly complex features. Process parameters for FDM are divided into controllable or uncontrollable parameters. The most critical ones are built orientation, layer thickness, infill pattern, infill density, and nozzle diameter. This study investigates the effects of combined infill patterns in 3D printed products. Five patterns (solid, honeycomb, wiggle, grid, and rectilinear) were combined in samples to analyze their effects on mechanical properties for tensile strength analysis. Polylactic acid (PLA) samples were printed in different build orientations through two directions: flat and on-edge. The limitation was that the software and machine could not combine the infill patterns. Thus, the patterns were designed and assembled in computer aided design (CAD) software. Finite element analysis (FEA) was used to determine the patterns’ features and results showed honeycomb and grid have the highest strength while their weights were lighter compared to solid. Moreover, 0° samples in both flat and on-edge direction had the strongest layer adhesion and the best quality. In contrast, perpendicular samples like 60° and 75° showed poor adhesion and were the weakest specimens in both flat and on-edge, respectively. In brief, by increasing the build orientation, the strength decreases in this study.


Author(s):  
Sudhir Kumar ◽  
Rupinder Singh ◽  
TP Singh ◽  
Ajay Batish

In this work, an effort has been made for multimaterial three-dimensional printing of functionally graded prototypes of polylactic acid matrix (tensile specimens as per ASTM D638 type IV) followed by characterization of mechanical and surface properties. The work is an extension of previous reported studies on twin-screw extrusion process for the preparation of multimaterial wires as feedstock filaments in possible three-dimensional printing applications. The results of the study suggest that the highest peak strength (46.28 MPa) and break strength (41.65 MPa) was obtained for multimaterial three-dimensional printed samples at infill density 100%, infill angle 45°, and infill speed of 90 mm/s on commercial open source fused deposition modeling setup. Further surface hardness measurements performed on two extreme surfaces (top surface comprising magnetite (Fe3O4)-reinforced polylactic acid and bottom with polylactic acid without any reinforcement) revealed that the hardness for the bottom layer was more than the hardness for the top layer. From fractured surface analysis (using photomicrographs), it has been observed that the three-dimensional printed samples with low infill density resulted into more void formation due to which the performance while mechanical testing was poor in comparison to samples printed with higher infill density. The results are also supported by rendered images of photomicrographs, which revealed that high roughness value of samples printed with low infill density was also one of the reasons for poor mechanical performance of multimaterial three-dimensional printed functionally graded prototypes.


Sign in / Sign up

Export Citation Format

Share Document