Dynamic Comparison of a 3-Degrees-of-Freedom Parallel Manipulator With Multiple Dry Clearance Joints and With Lubricated Joints

Author(s):  
Haodong Zhang ◽  
Xianmin Zhang ◽  
Xuchong Zhang ◽  
Zhenhui Zhan

This paper compares the dynamic response of a 3-degree-of-freedom (3-DOFs) parallel manipulator with multiple dry clearance joints and with lubricated joints. For this purpose, a methodology developed on Newton–Euler equations is proposed to study lubricated joints in the parallel manipulator, which involves the hydrodynamic forces and impact forces in the constrained equations. Specifically, the hydrodynamic forces are based on the Reynolds’ equation of an infinitely long lubricated joint. Dynamic simulations are presented through the dynamic parameters of a planar parallel manipulator (3-PRR, the underline of the P represents the actuated joint, P and R represents prismatic and revolute pairs respectively), which has six revolute clearance joints and three ideal prismatic joints. The results of the comparison show that the lubricant makes significant difference and greatly improves the dynamic performance of the parallel manipulator with multiple revolute joints. More periodic states are observed from the dynamic behavior of the parallel manipulator with lubricated joints, making the manipulator easier to drive. All results demonstrate the usage of the procedures which contain the hydrodynamic force model of multiple lubricated joints in non-linear DAEs of a 3-DOFs parallel manipulator.

2007 ◽  
Vol 2 (4) ◽  
pp. 344-350 ◽  
Author(s):  
Jun Wu ◽  
Jinsong Wang ◽  
Liping Wang ◽  
Tiemin Li ◽  
Yue Liu

This paper focuses on the dynamic modeling and counterweight optimization of the two degree of freedom planar parallel manipulator, which is a subpart of a hybrid machine tool. Based on a kinematic analysis, the dynamic equation is derived by using the Newton-Euler approach. Then, three counterweight modes are presented for the parallel manipulator. According to the cutting force model and motion planning of the cutting tool, the dynamic simulations with three counterweight modes are performed, and the mass of counterweight in each counterweight mode is optimized by minimizing the sum of mean square values of actuator forces. The simulations show that the optimal mass of counterweights does not equal the total mass of moving parts of the parallel manipulator, and each counterweight mode has its advantage and disadvantage. Considering the ease in which a counterweight can be implemented, the counterweight mode where two counterweights are connected to two sliders is adopted for the parallel manipulator.


Robotica ◽  
2016 ◽  
Vol 35 (6) ◽  
pp. 1223-1242 ◽  
Author(s):  
S. M. Varedi-Koulaei ◽  
H. M. Daniali ◽  
M. Farajtabar

SUMMARYIn reality, clearances in the joints are inevitable due to tolerances, and defects arising from design and manufacturing. Therefore, poor dynamic performance, reduction in components component lifetimes and generation of undesirable vibrations result in impacts of mating parts in the clearance joint. In this study, the dynamic behavior of a planar mechanism with revolute joints, in the presence of clearances is investigated. A continuous contact force model, based on elastic Hertz theory together with a dissipative term, is used to evaluate the contact forces here. Moreover, using a contact model, the effects of working speed and clearance size on the dynamic characteristics of a planar mechanical system are analyzed and compared. Furthermore, numerical results for a 3RRR planar parallel manipulator with six revolute clearance joints are presented.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
José-Alfredo Leal-Naranjo ◽  
Christopher-René Torres-San Miguel ◽  
Marco Ceccarelli ◽  
Horacio Rostro-Gonzalez

This work presents the design of a low-cost prosthetic device for shoulder disarticulation. A proper design of the mechanisms has been addressed to obtain a prototype that presents 7 degrees of freedom. Shoulder movement is achieved by means of a spherical parallel manipulator, elbow movement is performed by a six-bar mechanism, and the wrist movement is implemented by a spherical parallel manipulator. A set of dynamic simulations was performed in order to assess the functionality of the design. The prototype was built using 3D printing techniques and implementing low-cost actuators. An experimental evaluation was carried out to characterize this device. The result of this work is a prototype that weighs 1350 g that is able to perform movements related to activities of daily living.


2018 ◽  
Vol 9 (1) ◽  
pp. 25-39 ◽  
Author(s):  
Alfonso Hernández ◽  
Erik Macho ◽  
Mónica Urízar ◽  
Víctor Petuya ◽  
Zhen Zhang

Abstract. The Pa2 pair is composed of two intertwined articulated parallelograms connecting in parallel two links of a kinematic chain. This pair has two translational degrees of freedom leading to a translational plane variable with the position. Currently, the Pa2 pair appears in conceptual designs presented in recent papers. However, its practical application is very limited. One of the reasons for this can be the high number of redundant constraints it has. But, it has to be considered that most of them can be eliminated by replacing wisely the revolute joints by spherical joints. On the other side, the structure of the Pa2 pair contributes to increase the global stiffness of the kinematic chain in which it is mounted. Also, its implementation is a promising alternative to the problematic passive prismatic joints. In this paper, the Pa2 pairs are used in the design of a 3 − P Pa2 parallel manipulator. The potentiality of this design is evaluated and proven after doing the following analyses: direct and inverse kinematics, singularity study, and workspace computation and assessment.


2017 ◽  
Vol 9 (4) ◽  
Author(s):  
Lingmin Xu ◽  
Qinchuan Li ◽  
Ningbin Zhang ◽  
Qiaohong Chen

Parallel manipulators (PMs) with redundant actuation are attracting increasing research interest because they have demonstrated improved stiffness and fewer singularities. This paper proposes a new redundantly actuated parallel manipulator that has three degrees-of-freedom (DOFs) and four limbs. The proposed manipulator is a 2UPR-2PRU parallel manipulator (where P represents an actuated prismatic joint, R represents a revolute joint, and U represents a universal joint) that is actuated using four prismatic joints; two of these joints are mounted on the base to reduce the movable mass. Mobility analysis shows that the moving platform has two rotational DOFs and one translational DOF. First, the inverse displacement solution, velocity, and singularity analyses are discussed. Next, the local transmission index (LTI) and the good transmission workspace are used to evaluate the motion/force transmissibility of the 2UPR-2PRU parallel manipulator. Finally, the parameter-finiteness normalization method (PFNM) is used to produce an optimal design that considers the good transmission workspace. It is thus shown that the motion/force transmission of the proposed manipulator is improved by optimizing the link parameters.


2012 ◽  
Vol 251 ◽  
pp. 152-157
Author(s):  
Zheng Feng Bai ◽  
Xing Gui Wang ◽  
Yang Zhao

The existence of clearance in joints of manipulator system is inevitable and the movements of the real manipulator are deflection from the ideal manipulator for the clearances. In this study, the effects of clearance on dynamic responses of real manipulator system with multiple clearance joints are investigated using a computational methodology. By applying the nonlinear continuous contact force model, the contact dynamics model in joint clearance is established and the friction effect is considered with the help of Coulomb friction model. Then the dynamics simulation is carried out and the dynamic characteristics of manipulator system with multiple clearance joints are investigated. The results show that the clearance leads to degradation of dynamic performance of the real manipulator system.


Author(s):  
Stéphane Caro ◽  
Philippe Wenger ◽  
Damien Chablat

This paper deals with the non-singular assembly mode changing of a six degrees of freedom parallel manipulator. The manipulator is composed of three identical limbs and one moving platform. Each limb is composed of three prismatic joints of directions orthogonal to each other and one spherical joint. The first two prismatic joints of each limb are actuated. The planes normal to the directions of the first two prismatic joints of each limb are orthogonal to each other. It appears that the parallel singularities of the manipulator depend only on the orientation of its moving platform. Moreover, the manipulator turns to have two aspects, namely, two maximal singularity free domains without any singular configuration, in its orientation workspace. As the manipulator can get up to eight solutions to its direct kinematic model, several assembly modes can be connected by non-singular trajectories. It is noteworthy that the images of those trajectories in the joint space of the manipulator encircle one or several cusp point(s). This property can be depicted in a three dimensional space because the singularities depend only on the orientation of the moving-platform and the mapping between the orientation parameters of the manipulator and three joint variables can be obtained with a simple change of variables. Finally to the best of the authors’ knowledge, this is the first spatial parallel manipulator for which non-singular assembly mode changing trajectories have been found and shown.


Robotica ◽  
2021 ◽  
pp. 1-26
Author(s):  
Soheil Zarkandi

Abstract Reducing consumed power of a robotic machine has an essential role in enhancing its energy efficiency and must be considered during its design process. This paper deals with dynamic modeling and power optimization of a four-degrees-of-freedom flight simulator machine. Simulator cabin of the machine has yaw, pitch, roll and heave motions produced by a 4RPSP+PS parallel manipulator (PM). Using the Euler–Lagrange method, a closed-form dynamic equation is derived for the 4RPSP+PS PM, and its power consumption is computed on the entire workspace. Then, a newly introduced optimization algorithm called multiobjective golden eagle optimizer is utilized to establish a Pareto front of optimal designs of the manipulator having a relatively larger workspace and lower power consumption. The results are verified through numerical examples.


Machines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 107
Author(s):  
Rongchao Jiang ◽  
Zhenchao Jin ◽  
Dawei Liu ◽  
Dengfeng Wang

In order to reduce the negative effect of lightweighting of suspension components on vehicle dynamic performance, the control arm and torsion beam widely used in front and rear suspensions were taken as research objects for studying the lightweight design method of suspension components. Mesh morphing technology was employed to define design variables. Meanwhile, the rigid–flexible coupling vehicle model with flexible control arm and torsion beam was built for vehicle dynamic simulations. The total weight of control arm and torsion beam was taken as optimization objective, as well as ride comfort and handling stability performance indexes. In addition, the fatigue life, stiffness, and modal frequency of control arm and torsion beam were taken as the constraints. Then, Kriging model and NSGA-II were adopted to perform the multi-objective optimization of control arm and torsion beam for determining the lightweight scheme. By comparing the optimized and original design, it indicates that the weight of the optimized control arm and torsion beam are reduced 0.505 kg and 1.189 kg, respectively, while structural performance and vehicle performance satisfy the design requirement. The proposed multi-objective optimization method achieves a remarkable mass reduction, and proves to be feasible and effective for lightweight design of suspension components.


Author(s):  
P. Flores ◽  
J. Ambro´sio ◽  
J. C. P. Claro ◽  
H. M. Lankarani

This work deals with a methodology to assess the influence of the spherical clearance joints in spatial multibody systems. The methodology is based on the Cartesian coordinates, being the dynamics of the joint elements modeled as impacting bodies and controlled by contact forces. The impacts and contacts are described by a continuous contact force model that accounts for geometric and mechanical characteristics of the contacting surfaces. The contact force is evaluated as function of the elastic pseudo-penetration between the impacting bodies, coupled with a nonlinear viscous-elastic factor representing the energy dissipation during the impact process. A spatial four bar mechanism is used as an illustrative example and some numerical results are presented, being the efficiency of the developed methodology discussed in the process of their presentation. The results obtained show that the inclusion of clearance joints in the modelization of spatial multibody systems significantly influences the prediction of components’ position and drastically increases the peaks in acceleration and reaction moments at the joints. Moreover, the system’s response clearly tends to be nonperiodic when a clearance joint is included in the simulation.


Sign in / Sign up

Export Citation Format

Share Document