Heat Transfer Augmentation From Extended Surface Using Dimples

Author(s):  
Jay D. Mehta ◽  
Fay N. Colah ◽  
Anurag P. Rao ◽  
Vineeta P. Pendse ◽  
Vyankatesh U. Bagal ◽  
...  

This paper concentrates on comparing dimples to improve the heat transfer rate from extended surfaces under forced convection conditions. Dimples are milled on the surface of the fins while keeping the exposed surface area between the various designs as constant. Spherical dimples, ellipsoidal dimples, cylindrical dimples, and pyramidal dimples are selected as part of the paper. Experimental results are compared with results obtained from simulation. The paper concludes that surface modifications improve the heat transfer rates. The paper also compares the thermal performance of various shapes of dimples.

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4554
Author(s):  
Mohamed Iqbal Shajahan ◽  
Jee Joe Michael ◽  
M. Arulprakasajothi ◽  
Sivan Suresh ◽  
Emad Abouel Nasr ◽  
...  

There is a significant enhancement of the heat transfer rate with the usage of nanofluid. This article describes a study of the combination of using nanofluid with inserts, which has proved itself in attaining higher benefits in a heat exchanger, such as the radiator in automobiles, industries, etc. Nanofluids are emerging as alternative fluids for heat transfer applications due to enhanced thermal properties. In this paper, the thermal hydraulic performance of ZrO2, awater-based nanofluid with various volume concentrations of 0.1%, 0.25%, and 0.5%, and staggered conical strip inserts with three different twist ratios of 2.5, 3.5, and 4.5 in forward and backward flow patterns were experimentally tested under a fully developed laminar flow regime of 0–50 lphthrough a horizontal test pipe section with a length of 1 m with a constant wall heat flux of 280 W as the input boundary condition. The temperatures at equidistant position and across the test section were measured using K-type thermocouples. The pressure drop across the test section was measured using a U-tube manometer. The observed results showed that the use of staggered conical strip inserts improved the heat transfer rates up to that of 130.5%, 102.7%, and 64.52% in the forward arrangement, and similarly 145.03%, 116.57%, and 80.92% in the backward arrangement with the twist ratios of 2.5, 3.5, and 4.5 at the 0.5% volume concentration of ZrO2 nanofluid. It was also seen that the improvement in heat transfer was comparatively lower for the other two volume concentrations considered in this study. The twist ratio generates more swirl flow, disrupting the thermal hydraulic boundary layer. Nanofluids with a higher volume concentration lead to higher heat transfer due to higher effective thermal conductivity of the prepared nanofluid. The thermal performance factor (TPF) with conical strip inserts at all volume concentrations of nanofluids was perceived as greater than 1. A sizable thermal performance ratio of 1.62 was obtained for the backward-arranged conical strip insert with 2.5 as the twist ratio and a volume concentration of 0.5% ZrO2/deionized water nanofluid. Correlations were developed for the Nusselt number and friction factor based on the obtained experimental data with the help of regression analysis.


2015 ◽  
Vol 138 (3) ◽  
Author(s):  
Yonghui Xie ◽  
Zhongyang Shen ◽  
Di Zhang ◽  
Phillip Ligrani

Dimple structure is an effective heat transfer augmentation approach on coolant channel due to its advantage on pressure penalty. The implication of secondary protrusion, which indicates protrusion with smaller dimension than dimple, will intensify the Nusselt number Nu inside dimple cavity without obvious extra pressure penalty. The objective of this study is to numerically analyze the combination effect of dimples and secondary protrusion. Different protrusion–dimple configurations including protrusion print-diameter Dp, protrusion–dimple gap P, and staggered angle α are investigated. From the results, it is concluded that the implication of secondary protrusion will considerably increase the heat transfer rates inside dimple cavity. Cases 4 and 6 possess the highest Nusselt number enhancement ratio Nu/Nu0 reaching up to 2.1–2.2. The additional pressure penalty brought by the protrusion is within 15% resulting in total friction ratio f/f0 among the range of 1.9–2.1. Dimpled channels with secondary protrusions possess higher thermal performance factor TP, defined as (Nu/Nu0)/(f/f0)1/3, among which cases 4 and 6 are the optimal structures. Besides this, the TP of protrusion–dimple channels are comparable to the other typical heat transfer devices, and higher TP can be speculated after a more optimal dimple shape or combination with ribs and fins.


Author(s):  
Lash B. Mapa

Extended surfaces are used specifically to increase heat transfer rate between a solid and an adjacent fluid. The rate of heat transfer is from the solid surface to the fluid is governed by the Newton’s law of cooling. A simple inexpensive apparatus to demonstrate the effect of the length of the extended surface and the effect of different materials on the heat transfer rate was developed with the assistance of senior students enrolled in a senior project. Using this apparatus student was able to determine the temperature gradient and calculate the heat losses to the surroundings assuming infinitely long extended surface or negligible heat loss from the tip of the extended surface. Experiments were performed on three different materials, aluminum, copper and stainless steel by maintaining the base of the fin at a constant temperature and taking temperature measurements at regular intervals along the length of the extended surface. The apparatus was developed to be portable and used in a class room environment to enhance the understanding of heat transfer principles during a lecture rather than in a laboratory situation. The visual communication is much more powerful in many learning situations; the spoken word may be redundant. The feedback from the students was overwhelmingly positive. The paper describes the apparatus, method of construction and experimental results in a graphical form with discussion questions and answers


Author(s):  
Ashok D. Parekh ◽  
Jyotirmay Banerjee ◽  
Mahendra B. Maisuria ◽  
Vimal K. Patel

Extended surfaces or fins are used to enhance the heat transfer rate between a solid and adjoining fluid. An experimental investigation is carried out in the present work to establish the heat transfer characteristic for fins made of varying material and varying cross section. Three different fin sections, circular, square and triangular are considered for the study. Aluminum, brass and copper fins with varying cross section along the length are tested under steady state. Experimental set up consists of a constant temperature bath to maintain desired thermal boundary condition at one end of the fin. Copper constantan thermocouples are used to measure the temperature at different sections of the fin. The experimental results of temperature distribution of the fins are compared with the analytical and numerical results. The effectiveness of fins along the length for all section and materials is also compared.


In improvement of the thermal performance there is necessity of the heat transfer augmentation. Heat transfer enhancement can be achieved with enlarged or extended surface, impeded boundary level, augmentation in the turbulence etc. It is desired to keep the size of heat exchanger compact for better working conditions. In the proposed work, we made the Computational Fluid Dynamics (CFD) analysis of the non-conventional type of ribs. In this work the non-conventional Stepped grooved shoe shaped ribs were studied by changing its geometry parameters like rib height (15, 20,22mm), thickness of the rib (4, 5,10 mm), and the ratio between these entities. The numerical analysis was done to study change in rate of heat transfer and pressure drop. The effects of variation in staggered arrangements and truncation gap on thermal performance were also studied. It was observed that providing staggered arrangement with truncation gap of 20 mm gives the optimum value of thermal enhancement factor of 1.33.


2020 ◽  
Vol 92 (3) ◽  
pp. 30901
Author(s):  
Suvanjan Bhattacharyya ◽  
Debraj Sarkar ◽  
Ulavathi Shettar Mahabaleshwar ◽  
Manoj K. Soni ◽  
M. Mohanraj

The current study experimentally investigates the heat transfer augmentation on the novel axial corrugated heat exchanger tube in which the spring tape is introduced. Air (Pr = 0.707) is used as a working fluid. In order to augment the thermohydraulic performance, a corrugated tube with inserts is offered. The experimental study is further extended by varying the important parameters like spring ratio (y = 1.5, 2.0, 2.5) and Reynolds number (Re = 10 000–52 000). The angular pitch between the two neighboring corrugations and the angle of the corrugation is kept constant through the experiments at β = 1200 and α = 600 respectively, while two different corrugations heights (h) are analyzed. While increasing the corrugation height and decreasing the spring ratio, the impact of the swirling effect improves the thermal performance of the system. The maximum thermal performance is obtained when the corrugation height is h = 0.2 and spring ratio y = 1.5. Eventually, correlations for predicting friction factor (f) and Nusselt number (Nu) are developed.


Author(s):  
Pornchai Nivesrangsan ◽  
Somsak Pethkool ◽  
Kwanchai Nanan ◽  
Monsak Pimsarn ◽  
Smith Eiamsa-ard

This paper presents the heat transfer augmentation and friction factor characteristics by means of dimpled tubes. The experiments were conducted using the dimpled tubes with two different dimpled-surface patterns including aligned arrangement (A-A) and staggered arrangement (S-A), each with two pitch ratios (PR = p/Di = 0.6 and 1.0), for Reynolds number ranging from 9800 to 67,000. The experimental results achieved from the dimpled tubes are compared with those obtained from the plain tube. Evidently, the dimpled tubes with both arrangements offer higher heat transfer rates compared to the plain tube and the dimpled tube with staggered arrangement shows an advantage on the basis of heat transfer enhancement over the dimpled tube with aligned arrangement. The increase in heat transfer rate with reducing pitch ratio is due to the higher turbulent intensity imparted to the flow between the dimple surfaces. The mean heat transfer rate offered by the dimpled tube with staggered arrangement (S-A) at the lowest pitch ratio (PR = 0.6), is higher than those provided by the plain tube and the dimpled tube with aligned arrangement (A-A) at the same PR by around 127% and 8%, respectively. The empirical correlations developed in terms of pitch ratio (PR), Prandtl number (Pr) and Reynolds number, are fitted the experimental data within ±8% and ±2% for Nusselt number (Nu) and friction factor (f), respectively. In addition, the thermal performance factors under an equal pumping power constraint of the dimple tubes for both dimpled-surface arrangements are also determined.


1988 ◽  
Vol 110 (4) ◽  
pp. 299-305 ◽  
Author(s):  
K. Chen

The design of a plane-type, bidirectional thermal diode is presented. This diode is composed of two vertical plates and several fluid-filled loops with their horizontal segments soldered to the vertical plates. This invention is simple in construction and low in cost. The direction of heat transfer in the invented thermal diode can be easily reversed. These features of the present invention make it very attractive to solar energy utilization. Natural convection analysis for thermosyphon operations was adopted for heat transfer calculations of the fluid-filled loops. A one-dimensional heat transfer analysis was employed to estimate the heat transfer rate and ratio of heat transfer rates of the diode under forward and reverse bias.


Heat exchangers are prominent industrial applications where engineering science of heat transfer and Mass transfer occurs. It is a contrivance where transfer of energy occurs to get output in the form of energy transfer. This paper aims at finding a solution to improve the thermal performance in a heat exchanger by using passive method techniques. This experimental and numerical analysis deals with finding the temperature outlets of cold and hot fluid for different mass flow rates and also pressure drop in the tube and the annular side by adding an elliptical leaf strip in the pipe at various angles. The single elliptical leaf used in experiment has major to minor axes ratios as 2:1 and distance of 50 mm between two leaves are arranged at different angular orientations from 0 0 to 1800 with 100 intervals. Since it’s not possible to find the heat transfer rates and pressure drops at every orientation of elliptical leaf so a generalized regression neural network (GRNN) prediction tool is used to get outputs with given inputs to avoid experimentation. GRNN is a statistical method of determining the relationship between dependent and independent variables. The values obtained from experimentation and GRNN nearly had precise values to each other. This analysis is a small step in regard with encomiastic approach for enhancement in performance of heat exchangers


Author(s):  
Smith Eiamsa-ard ◽  
Vichan Kongkaitpaiboon ◽  
Khwanchit Wongcharee

This paper reports the experimental investigation of local convective heat transfer enhancement, flow friction and thermal performance factor behaviors in the tube fitted with the short helical tapes (SHTs) acting as decaying swirl flow generators. The tapes with three different helical tape angles (? = 90°, 135° and 180°) and three different channel numbers (N = 2, 3 and 4 channels) were tested under the uniform wall heat flux condition. The performance of each tape is compared with the performance of the plain tube subject to the same pumping power. The experimental results show that the heat transfer rates and friction factors of the tube with SHTs are respectively in range of 1.15 to 1.9 and 1.49 to 2.31 times of those in the plain, corresponding to thermal performances between 0.98 and 1.46. The correlations for Nusselt number (Nu) as a function of Reynolds number (Re), Prandtl number (Pr), helical tape angle (?) and the number of channel (N) are also developed.


Sign in / Sign up

Export Citation Format

Share Document