Implications of Non-Bingham Rheology

Author(s):  
Leonard F. Pease ◽  
Judith A. Bamberger ◽  
Michael J. Minette

Abstract One of the key challenges now facing the US Department of Energy (DOE) is the fate of radioactive waste remaining from World War II and the Cold War, which is stored underground in tanks some 75 feet in diameter and over 30 feet tall. Over time, the waste has segmented into multiple layers with sludges and slurries at the bottom with salt crust layers often at the top and liquid in between. DOE’s current official baseline plans call for remaining sludges and slurries to be removed from the tanks and converted into a stable glass waste form. Minimizing worker exposure to radiation drives DOE to use slurry processing techniques to suspend, mobilize, transport, mix, and process the waste. Therefore, a clear and quantitative understanding of Hanford waste rheology is essential for the success of the DOE mission. Historically much of the waste has been characterized using Eugene Bingham’s century old model that provides a straight line fit to higher shear rate data with the intercept suggesting a yield stress and the slope providing the consistency. Yet, Bingham fits overestimate the shear stress at a given shear rate for low to intermediate shear rates, exactly the range of shear rates typically encountered in pipe flow, where shear rates peak along the pipe wall and vanish in the center. This model produces a fictitious yield stress for some of the wastes that do not exhibit yield phenomena. While overestimating the yield stress may be prudent, safe, and conservative for some applications (e.g., pump sizing to ensure that pumps can handle yield stresses), overestimating the rheology may be inaccurate and non-conservative for other applications (e.g., eroding settled particle beds). Therefore, this paper evaluates the slurry rheology of Hanford and Savannah River wastes using a more modern rheological model that fits the full range of experimental data. Although a bias has been recognized and alternative models proposed, the magnitude of this bias and the implications for tank waste have only been qualitatively suggested. The purpose of this paper is to evaluate quantitatively implications of the poor quality of fit between a Bingham model for rheology and experimental data at modest shear rates. We first demonstrate the magnitude of the bias between the data and the Bingham extrapolation. We then evaluate quantitatively the velocity profile under laminar conditions. This analysis shows that the bias may be large (hundreds of percent or more) at modest shear rates and that modest shear rates dominate pipe velocity profiles.

1964 ◽  
Vol 19 (1) ◽  
pp. 127-133 ◽  
Author(s):  
S. E. Charm ◽  
W. McComis ◽  
G. Kurland

A structural model developed for kaolin suspensions was applied to blood in order to determine the structure and strength of the red cell suspensions. The yield stress of red cell suspensions determined in settling experiments agreed with the yield stress determined from shear stress-shear rate information employing Casson's equation. Theoretical considerations indicate that the shear stress-shear rate curve for blood should approach a straight line. This was found to be true at shear rates above 40 sec-1. The slope of this line was predicted from calculations based on sedimentation experiments and a modified Einstein's equation. The data suggest that the curvature of the shear stress-shear rate plot at low shear rates is due to aggregates of cells which break down under increasing shear rate, resulting finally in individual flocs. It is suggested that a floc consists of one to four cells with adhering plasma. The aggregate was calculated to have twice as much plasma associated with it as does a floc. However, the size of the aggregate could not be determined since the number of flocs associated with an aggregate could not be determined. shear stress-shear rate curve; red cell floc; red cell aggregate; sedimentation rate; blood viscosity and flow Submitted on February 28, 1963


2013 ◽  
Vol 199 ◽  
pp. 188-193 ◽  
Author(s):  
Adam Czaban

One of the most important physical quantities which has an influence on bearings and micro-bearings functioning is the viscosity of a lubricant. The data about a viscosity value dependence on temperature and shear rate are essential for designing sliding friction pairs. In design calculations usually there is assumed that a lubricant is a Newtonian fluid, therefore viscosity is constant over the full range of shear rates. During operation of friction pairs the contamination particles get into a lubricant and this causes that the lubricant becomes a non-Newtonian pseudoplastic or viscoelastic fluid. A similar effect on lubricating oil properties have combustion products or special performance additives. Furthermore, a lubricating oil ages and wears out, i.e. during its operating the initial structure of a particles is destroyed which can cause the change of the oil viscosity and lubricity values. The aim of this work is to determine the dynamic viscosity values in dependence on temperature and shear rate for selected new and used lubricating oils. In this research motor oils for passenger vehicles and tractors were investigated. This paper presents the results of measurements of the viscosity changes, in dependence on shear rate and temperature, made for the new and used oils. One of the investigated oils is Superol CC-40, which was used in four-stroke 4562 cm3 diesel engine for twenty months, which corresponds to 250 hours of operating. The second of investigated oils is Shell Helix Ultra AV-L which was used in four-stroke 2000 cm3 diesel engine for ten months at a distance of 15 000 kilometers. The viscosity measurements for the new and used lubricating oils were made with the Thermo Scientific Haake Mars III rheometer, in the range of temperatures from 10°C to 120°C and of shear rates to 51000 1/s. Moreover, the analysis of wear products, contaminants and additives in the investigated new and used lubricating oils was made with the rotating disc electrode atomic emission spectrometer Spectro Incorporated Spectroil Q100, which gives possibility to determine 22 most common elements which occur in motor, turbine and gear oils. The obtained information will be used in future studies related to hydrodynamic lubrication of slide bearings and micro-bearings. It also may be useful for designing bearings and sliding friction pairs.


2008 ◽  
Vol 18 (4) ◽  
pp. 44790-1-44790-8 ◽  
Author(s):  
I. Masalova ◽  
A.Ya. Malkin ◽  
R. Foudazi

Abstract The yield stresses of five samples (two highly concentrated emulsions, two Kaolin dispersions and mayonnaise) were determined in two ways. In one case, steady shear experiments were performed over a range of incrementally decreasing shear rates. The resulting flow curves, plotted as shear stress against shear rate, clearly showed the existence of a yield stress for each sample, the Herschel-Bulkley model being fitted to obtain values. In the second case, oscillatory amplitude sweeps were performed at three frequencies, and the “dynamic yield stress” was defined as the stress at which deviation from linearity occurred; this procedure has often been used to determine the yield stress of emulsions. It was found that the dynamic yield stress is frequency dependent, and cannot therefore be thought of as physically meaningful material property. At no frequency did the dynamic yield stress correlate with the yield stress obtained from the flow curves.


2016 ◽  
Vol 12 (3) ◽  
pp. 4322-4339
Author(s):  
Salah Hamza

Knowledge of rheological properties of polymer and their variation with temperature and concentration have been globally important for processing and fabrication of polymers in order to make useful products. Basheer et al. [1] investigated, experimentally, the changes in rheological properties of metallocene linear low density polyethylene (mLLDPE) solutions by using a rotational rheometer model AR-G2 with parallel plate geometry. Their work covered the temperature range from  to  and  concentration from  to . In this paper, we reconsider Basheer work to describe the rheological behavior of mLLDPE solutions and its dependence on concentration and temperature.Until now, several models have been built to describe the complex behavior of polymer fluids with varying degrees of success. In this article, Oldroyd 4-constant, Giesekus and Power law models were tested for investigating the viscosity of mLLDPE solution as a function of shear rate. Results showed that Giesekus and power law models provide the best prediction of viscosity for a wide range of shear rates at constant temperature and concentration. Therefore, Giesekus and power law models were suitable for all mLLDPE solutions while Oldroyd 4-constant model doesn't.A new proposed correlation for the viscosity of mLLDPE solutions as a function of shear rate, temperature and concentration has been suggested. The effect of temperature and concentration can be adequately described by an Arrhenius-type and exponential function respectively. The proposed correlation form was found to fit the experimental data adequately.


2002 ◽  
Vol 12 (5) ◽  
pp. 241-251
Author(s):  
Tim Kealy ◽  
Carlos Tiu

Abstract In the case of some highly viscous fluids, or thick pastes (such as those exhibiting high yield stress and/or high plastic viscosity), neither rotational nor tube type viscometers are suitable for rheological characterisation. Due to their capacity for generating and maintaining high torque or high rates of rotation, kneaders and mixers can often engender shear rates in excess of those of conventional rotational viscometers. Often these devices are instrumented, to measure and record the rate of rotation of the mixing blades and the related torque on the shaft turning the blades. The major problem facing users of these mixers lies in data interpretation, specifically in relating rate of rotation and torque data to shear rate and shear stress respectively. If it were possible to obtain such relationships, useful rheological data could be generated with instrumented mixers.


2021 ◽  
Author(s):  
Sandra Knutsen ◽  
Eric Cayeux ◽  
Arild Saasen ◽  
Mahmoud Khalifeh

Abstract A number of different models are used to describe the shear rate dependent viscosity of drilling fluids. Most, such as the Herschel-Bulkley model, have a purely empirical basis. The Quemada model, while still empirical, is based on physical principles. It is based on the notion that structural units develop in the fluid at low shear rates which are then partially broken down as the applied shear rate increases. In the current work, drilling fluid rheological data are fitted to the Herschel-Bulkley and the Quemada model. The development of the Quemada model and the calculation of each model parameter are presented. We show that the Quemada model better fits measurements over a wider range of shear rates than the Herschel-Bulkley model. We describe how to select the parameters of the Quemada model. Knowing the difficulty of obtaining a known shear rate for fluids with yield stresses, we discuss how this can affect the quality of the Quemada model fit. Furthermore, in principle, the Quemada model is not applicable in presence a non-zero yield stress. Therefore, we show how to handle the yield stress using a (very high) zero shear rate viscosity.


1994 ◽  
Vol 71 (01) ◽  
pp. 078-090 ◽  
Author(s):  
H L Goldsmith ◽  
M M Frojmovic ◽  
Susan Braovac ◽  
Fiona McIntosh ◽  
T Wong

SummaryThe effect of shear rate and fibrinogen concentration on adenosine diphosphate-induced aggregation of suspensions of washed human platelets in Poiseuille flow at 23°C was studied using a previously described double infusion technique and resistive particle counter size analysis (1). Using suspensions of multiple-centrifuged and -washed cells in Tyrodes-albumin [3 × 105 μl−1; (17)] with [fibrinogen] from 0 to 1.2μM, the, rate and extent of aggregation with 0.7 μM ADP in Tyrodes-albumin were measured over a range of mean transit times from 0.2 to 43 s, and at mean tube shear rates, Ḡ, = 41.9, 335 and 1,335 s−1. As measured by the decrease in singlet concentration, aggregation at 1.2 μM fibrinogen increased with increasing Ḡ up to 1,335 s1, in contrast to that previously reported in citratcd plasma, in which aggregation reached a maximum at Ḡ = 335 s−1. Without added fibrinogen, there was no aggregation at Ḡ = 41.9 s1; at Ḡ = 335 s1, there was significant aggregation but with an initial lag time, aggregation increasing further at Ḡ = 1,335 s−1. Without added fibrinogen, aggregation was abolished at all Ḡ upon incubation with the hexapeptide GRGDSP, but was almost unaffected by addition of an F(ab’)2 fragment of an antibody to human fibrinogen. Aggregation in the absence of added fibrinogen was also observed at 37°C. The activation of the multiple-washed platelets was tested using flow cytometry with the fluorescently labelled monoclonal antibodies FITC-PAC1 and FITC-9F9. It was shown that 57% of single cells in unactivated PRT expressed maximal GPIIb-IIIa fibrinogen receptors (MoAb PAC1) and 54% expressed pre-bound fibrinogen (MoAb 9F9), with further increases on ADP activation. However, incubation with GRGDSP and the F(ab’)2 fragment did not inhibit the prebound fibrinogen. Moreover, relatively unactivated cells (8% expressing receptor, 14% prebound fibrinogen), prepared from acidified cPRP by single centrifugation with 50 nM of the stable prostacyclin derivative, ZK 36 374, and resuspension in Tyrodes-albumin at 5 × 104 μl−1, aggregated with 2 and 5 μM ADP at Ḡ = 335 and 1,335 s−1 in the absence of added fibrinogen. We therefore postulate that a protein such as von Willebrand factor, secreted during platelet isolation or in flow at sufficiently high shear rates, may yield the observed shear-rate dependent aggregation without fibrinogen.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benoit Tallon ◽  
Artem Kovalenko ◽  
Olivier Poncelet ◽  
Christophe Aristégui ◽  
Olivier Mondain-Monval ◽  
...  

AbstractNegative refraction of acoustic waves is demonstrated through underwater experiments conducted at ultrasonic frequencies on a 3D locally resonant acoustic metafluid made of soft porous silicone-rubber micro-beads suspended in a yield-stress fluid. By measuring the refracted angle of the acoustic beam transmitted through this metafluid shaped as a prism, we determine the acoustic index to water according to Snell’s law. These experimental data are then compared with an excellent agreement to calculations performed in the framework of Multiple Scattering Theory showing that the emergence of negative refraction depends on the volume fraction $$\Phi$$ Φ of the resonant micro-beads. For diluted metafluid ($$\Phi =3\%$$ Φ = 3 % ), only positive refraction occurs whereas negative refraction is demonstrated over a broad frequency band with concentrated metafluid ($$\Phi =17\%$$ Φ = 17 % ).


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2315
Author(s):  
Ramin Hosseinnezhad

The shear-induced and cellulose-nanofiber nucleated crystallization of two novel aliphatic–aromatic copolyesters is outlined due to its significance for the in situ generation of biodegradable nanocomposites, which require the crystallization of nanofibrous sheared inclusions at higher temperatures. The shear-induced non-isothermal crystallization of two copolyesters, namely, poly(butylene adipate-co-succinate-co-glutarate-co-terephthalate) (PBASGT) and poly(butylene adipate-co-terephthalate) (PBAT), was studied following a light depolarization technique. To have a deep insight into the process, the effects of the shear rate, shear time, shearing temperature and cooling rate on the initiation, kinetics, growth and termination of crystals were investigated. Films of 60 μm were subjected to various shear rates (100–800 s−1) for different time intervals during cooling. The effects of the shearing time and increasing the shear rate were found to be an elevated crystallization temperature, increased nucleation density, reduced growth size of lamella stacks and decreased crystallization time. Due to the boosted nucleation sites, the nuclei impinged with each other quickly and growth was hindered. The effect of the cooling rate was more significant at lower shear rates. Shearing the samples at lower temperatures, but still above the nominal melting point, further shifted the non-isothermal crystallization to higher temperatures. As a result of cellulose nanofibers’ presence, the crystallization of PBAT, analyzed by DSC, was shifted to higher temperatures.


Sign in / Sign up

Export Citation Format

Share Document