Enhancement in Forced Convection by a Two Stage Corona Wind Generator

Author(s):  
A. K. M. Monayem H. Mazumder

Abstract In this study, forced convection enhancement in a square channel by a two stage electrohydrodynamic (EHD) gas pump is numerically analyzed. This study is implemented for a two stage EHD gas pump with three emitting electrode configurations: 8, 24, and 56 respectively to seek their effectiveness in the enhancement of forced convection and pumping power requirement. The EHD gas pump is evaluated for a wide range of operating voltages starting from 20 kV up to 28 kV. The influence of electric field on the flow and temperature fields is also examined for a wide range of Reynolds numbers. The three-dimensional governing equations for the flow and temperature fields are solved using the finite volume method. The Reynolds numbers (Re) considered in this study varies in a range between 100 and 2000. At Re = 100, a maximum increase of 42% in the average Nusselt number is achieved with an applied voltage of 28 kV. The overall effectiveness of the EHD gas pump in heat transfer enhancement is evaluated by the thermal hydraulic performance parameter, (Nu/Nu0)/(f/f0), which is always greater than unity. These results disclose that EHD technique has a great potential for many engineering applications, particularly for thermal management.

Author(s):  
A. K. M. Monayem H. Mazumder

Abstract In this study, forced convection enhancement in a square channel by a single stage electrohydrodynamic (EHD) gas pump is numerically examined. The EHD gas pump having three different sizes of grounded electrode configurations: 0.5-inch, 1-inch, and 2-inch wide respectively are investigated for their effectiveness in the enhancement of forced convection and pumping power requirement. The EHD gas pump with 28 emitting electrodes is evaluated for a wide range of operating voltages starting from 20 kV up to 28 kV. The influence of electric field on the flow and temperature fields is also examined for a wide range of Reynolds numbers. The three-dimensional governing equations for the flow and temperature fields are solved using the finite volume method. The Reynolds numbers (Re) considered in this study varies in a range between 100 and 2000. At Re = 100, a maximum increase of 55% in the average Nusselt number is achieved with an applied voltage of 28 kV. The overall effectiveness of the EHD gas pump in heat transfer enhancement is evaluated by the thermal hydraulic performance parameter, (Nu/Nu0)/(f/f0), which is always greater than unity. These results disclose that EHD technique has a great potential for many engineering applications, particularly for thermal management.


Author(s):  
A. K. M. Monayem H. Mazumder ◽  
F. C. Lai

In this study, enhancement in forced convection inside a square channel by a two-stage electrohydrodynamic (EHD) gas pump has been examined by numerical simulations. The EHD gas pump with 28 emitting electrodes in each stage has been evaluated for a wide range of operating voltages starting from the corona threshold voltage up to 28 kV for further improvement in its performance over that of a single-stage. To achieve the maximum enhancement in heat transfer, the emitting electrodes of the corona wind generator are flush mounted on the channel walls so that the corona wind produced directly perturbs the boundary layer. The results show that EHD technique has a great potential for applications in thermal management.


2012 ◽  
Vol 696 ◽  
pp. 228-262 ◽  
Author(s):  
A. Kourmatzis ◽  
J. S. Shrimpton

AbstractThe fundamental mechanisms responsible for the creation of electrohydrodynamically driven roll structures in free electroconvection between two plates are analysed with reference to traditional Rayleigh–Bénard convection (RBC). Previously available knowledge limited to two dimensions is extended to three-dimensions, and a wide range of electric Reynolds numbers is analysed, extending into a fully inherently three-dimensional turbulent regime. Results reveal that structures appearing in three-dimensional electrohydrodynamics (EHD) are similar to those observed for RBC, and while two-dimensional EHD results bear some similarities with the three-dimensional results there are distinct differences. Analysis of two-point correlations and integral length scales show that full three-dimensional electroconvection is more chaotic than in two dimensions and this is also noted by qualitatively observing the roll structures that arise for both low (${\mathit{Re}}_{E} = 1$) and high electric Reynolds numbers (up to ${\mathit{Re}}_{E} = 120$). Furthermore, calculations of mean profiles and second-order moments along with energy budgets and spectra have examined the validity of neglecting the fluctuating electric field ${ E}_{i}^{\ensuremath{\prime} } $ in the Reynolds-averaged EHD equations and provide insight into the generation and transport mechanisms of turbulent EHD. Spectral and spatial data clearly indicate how fluctuating energy is transferred from electrical to hydrodynamic forms, on moving through the domain away from the charging electrode. It is shown that ${ E}_{i}^{\ensuremath{\prime} } $ is not negligible close to the walls and terms acting as sources and sinks in the turbulent kinetic energy, turbulent scalar flux and turbulent scalar variance equations are examined. Profiles of hydrodynamic terms in the budgets resemble those in the literature for RBC; however there are terms specific to EHD that are significant, indicating that the transfer of energy in EHD is also attributed to further electrodynamic terms and a strong coupling exists between the charge flux and variance, due to the ionic drift term.


2016 ◽  
Author(s):  
Guilherme Feitosa Rosetti ◽  
Guilherme Vaz ◽  
André Luís Condino Fujarra

The cylinder flow is a canonical problem for Computational Fluid Dynamics (CFD), as it can display several of the most relevant issues for a wide class of flows, such as boundary layer separation, vortex shedding, flow instabilities, laminar-turbulent transition and others. Several applications also display these features justifying the amount of energy invested in studying this problem in a wide range of Reynolds numbers. The Unsteady Reynolds Averaged Navier Stokes (URANS) equations combined with simplifying assumptions for turbulence have been shown inappropriate for the captive cylinder flow in an important range of Reynolds numbers. For that reason, recent improvements in turbulence modeling has been one of the most important lines of research within that issue, aiming at better prediction of flow and loads, mainly targeting the three-dimensional effects and laminar-turbulent transition, which are so important for blunt bodies. In contrast, a much smaller amount of work is observed concerning the investigation of turbulent effects when the cylinder moves with driven or free motions. Evidently, larger understanding of the contribution of turbulence in those situations can lead to more precise mathematical and numerical modeling of the flow around a moving cylinder. In this paper, we present CFD calculations in a range of moderate Reynolds numbers with different turbulence models and considering a cylinder in captive condition, in driven and in free motions. The results corroborate an intuitive notion that the inertial effects indeed play very important role in determining loads and motions. The flow also seems to adapt to the motions in such a way that vortices are more correlated and less influenced by turbulence effects. Due to good comparison of the numerical and experimental results for the moving-cylinder cases, it is observed that the choice of turbulence model for driven and free motions calculations is markedly less decisive than for the captive cylinder case.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Bayode E. Owolabi ◽  
David J. C. Dennis ◽  
Robert J. Poole

In this study, we examine the development length requirements for laminar Couette–Poiseuille flows in a two-dimensional (2D) channel as well as in the three-dimensional (3D) case of flow through a square duct, using a combination of numerical and experimental approaches. The parameter space investigated covers wall to bulk velocity ratios, r, spanning from 0 (purely pressure-driven flow) to 2 (purely wall driven-flow; 4 in the case of a square duct) and a wide range of Reynolds numbers (Re). The results indicate an increase in the development length (L) with r. Consistent with the findings of Durst et al. (2005, “The Development Lengths of Laminar Pipe and Channel Flows,” ASME J. Fluids Eng., 127(6), pp. 1154–1160), L was observed to be of the order of the channel height in the limit as Re→0, irrespective of the condition at the inlet. This, however, changes at high Reynolds numbers, with L increasing linearly with Re. In all the cases considered, a uniform velocity profile at the inlet was found to result in longer entry lengths than in a flow developing from a parabolic inlet profile. We show that this inlet effect becomes less important as the limit of purely wall-driven flow is approached. Finally, we develop correlations for predicting L in these flows and, for the first time, also present laser Doppler velocimetry (LDV) measurements of the developing as well as fully-developed velocity profiles, and observe good agreement between experiment, analytical solution, and numerical simulation results in the 3D case.


2011 ◽  
Vol 57 (205) ◽  
pp. 811-816 ◽  
Author(s):  
Emilie Zermatten ◽  
Sophia Haussener ◽  
Martin Schneebeli ◽  
Aldo Steinfeld

AbstractA tomography-based methodology for the mass transport characterization of snow is presented. Five samples, characteristic for a wide range of seasonal snow, are considered. Their three-dimensional (3-D) geometrical representations are obtained by micro-computed tomography and used in direct pore-level simulations to numerically solve the governing mass and momentum conservation equations, allowing for the determination of their effective permeability and Dupuit–Forchheimer coefficient. The extension to the Dupuit–coefficient is useful near the snow surface, where Reynolds numbers higher than unity can appear. Simplified semi-empirical models of porous media are also examined. The methodology presented allows for the determination of snow’s effective mass transport properties, which are strongly dependent on the snow microstructure and morphology. These effective properties can, in turn, readily be used in snowpack volume-averaged (continuum) models such as strongly layered samples with macroscopically anisotropic properties.


2014 ◽  
Vol 25 (11) ◽  
pp. 1450058 ◽  
Author(s):  
Fakher Oueslati ◽  
Brahim Ben-Beya ◽  
Taieb Lili

Unsteady three-dimensional (3D) double diffusive convection in tilted enclosure having a parallelepipedic shape has been analyzed numerically. The governing unsteady, 3D flow, energy and concentration transport equations, have been solved using an accelerated multigrid implicit volume method. Main attention was paid to the effects of the Rayleigh number Ra , buoyancy ratio N and the inclination angle γ of the cavity on the flow structure and heat and mass transfer rates. Typical distributions of velocity contours, temperature and concentration fields in wide range of defining parameters 103 ≤ Ra ≤ 2 × 104, -5 ≤ N ≤ 5 have been obtained. It is found, that the optimal heat and mass transfer rates for the aiding situation have been observed at two particular inclination angles namely 30° and 75° about the horizontal direction. It should be noted that the flow undergoes a periodic behavior for particular parameters Ra = 104 and γ = 75° according to the aiding flow case. The results also suggest that when N is in range -2 ≤ N ≤ -0.6, the flow continues to be three-dimensional keeping different heat and mass rates. Furthermore, it has been argued that the 2D assumption can be adopted for the 3D flows when the buoyancy ratio N is in range (-0.5–0).


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Vladimir Viktorov ◽  
Carmen Visconte ◽  
Md Readul Mahmud

A novel passive micromixer, denoted as the Y-Y mixer, based on split-and-recombine (SAR) principle is proposed and studied both experimentally and numerically over Reynolds numbers ranging from 1 to 100. Two species are supplied to a prototype via a Y inlet, and flow through four identical elements repeated in series; the width of the mixing channel varies from 0.4 to 0.6 mm, while depth is 0.4 mm. An image analysis technique was used to evaluate mixture homogeneity at four target areas along the mixer. Numerical simulations were found to be a useful support for observing the complex three-dimensional flow inside the channels. Comparison with a known mixer, the tear-drop one, based on the same SAR principle, was also performed, to have a point of reference for evaluating performances. A good agreement was found between numerical and experimental results. Over the examined range of Reynolds numbers Re, the Y-Y micromixer showed at its exit an almost flat mixing characteristic, with a mixing efficiency higher than 0.9; conversely, the tear-drop mixer showed a relevant decrease of efficiency at the midrange. The good performance of the Y-Y micromixer is due to the three-dimensional 90 deg change of direction that occurs in its channel geometry, which causes a fluid swirling already at the midrange of Reynolds numbers. Consequently, the fluid path is lengthened and the interfacial area of species is increased, compensating for the residence time reduction.


2011 ◽  
Vol 133 (7) ◽  
Author(s):  
A. B. Ansari ◽  
S. A. Gandjalikhan Nassab

This paper presents a numerical investigation for laminar forced convection flow of a radiating gas over an inclined backward facing step in a horizontal duct subjected to bleeding condition. The fluid is treated as a gray, absorbing, emitting, and scattering medium. The two-dimensional Cartesian coordinate system is used to simulate flow over inclined surface by considering the blocked-off region in regular grid. The governing differential equations consisting the momentum and energy are solved numerically by the computational fluid dynamics techniques to obtain the velocity and temperature fields. Discretized forms of these equations are obtained by the finite volume method and solved using the SIMPLE algorithm. Since the gas is considered as a radiating medium, convection, conduction, and radiation heat transfer mechanisms take place simultaneously in the gas flow. For computation of the radiative term in the gas energy equation, the radiative transfer equation is solved numerically by the discrete ordinate method to find the radiative heat flux distribution inside the radiating medium. The effects of bleeding coefficient, inclination angle, optical thickness, albedo coefficient, and the radiation-conduction parameter on the flow and temperature distributions are carried out.


Author(s):  
Keith M. Boyer ◽  
Walter F. O’Brien

A streamline curvature method with improvements to key loss models is applied to a two-stage, low aspect ratio, transonic fan with design tip relative Mach number of approximately 1.65. Central to the improvements is the incorporation of a physics-based shock model. The attempt here is to capture the effects of key flow phenomena relative to the off-design performance of the fan. A quantitative analysis regarding solution sensitivities to model parameters that influence the key phenomena over a wide range of operating conditions is presented. Predictions are compared to performance determined from overall and interstage measurements, as well as from a three-dimensional, steady, Reynolds-averaged Navier-Stokes method applied across the first rotor. Overall and spanwise comparisons demonstrate that the improved model gives reasonable performance trending and generally accurate results. The method can be used to provide boundary conditions to higher-order solvers, or implemented within novel approaches using the streamline curvature method to explore complex engine-inlet integration issues, such as time-variant distortion.


Sign in / Sign up

Export Citation Format

Share Document