Effect of Alloying Elements Concentration and Processing Parameters on the Structural and Mechanical Properties of Lightweight Magnesium Alloys

Author(s):  
Jessica Rawles ◽  
Svitlana Fialkova ◽  
Zhigang Xu ◽  
Jagannathan Sankar

Abstract Magnesium is utilized as a light-weight metal in the aerospace and automotive industries, and recently draws a lot of attention in biomedical research due to its biodegradable and biocompatible properties [1–3]. With Zinc being a biocompatible element, magnesium-zinc alloys have been very attractive for such applications. Mechanical properties including yield strength, tensile strength and hardness values of magnesium alloys are reported to be improved with the adding of alloying elements such as Zn, Zr, Al, Y and some rare earth elements. In our study we observe the improvement of mechanical properties Vicker’s Hardness (VH) for Mg-Zn-Ca alloys with a fixed content of calcium and varying amounts of zinc alloying elements. Potential Outcome: Potentially new developed alloys could be used for lightweight materials for aerospace, automotive, and biomedical application.

2011 ◽  
Vol 686 ◽  
pp. 96-100
Author(s):  
Shu Bo Li ◽  
Han Li ◽  
Jian Hui Li ◽  
Wen Bo Du ◽  
Zhao Hui Wang

The microstructures and mechanical properties of the Mg-Zn-Er alloys have been investigated. The results show that the alloying elements (Zn/Er) with different ratio have a great effect on the microstructure and mechanical properties of the magnesium alloys, especially for the phase constitutes. Furthermore, the more attractive result is that the quasicrystalline phase, as the main secondary phase, precipitates during solidification in the alloy with addition of Zn/Er ration of 6. The cast Mg-5Zn-0.83Er alloy exhibits the ultimate tensile strength and yield tensile strength are 190MPa and 80MPa at room temperature, respectively, with an elongation of 15%.


2021 ◽  
Author(s):  
Nouha Loukil

Magnesium alloys are the lightest structural metal. The lightness is the main reason for the interest for Mg in various industrial and clinical applications, in which lightweight structures are in high demand. Recent research and developments on magnesium Mg alloys are reviewed. A particular attention is focused on binary and ternary Mg alloys consisting mainly of Al, Zn, Mn, Ca and rare earth (RE) elements. The effects of different alloying elements on the microstructure, the mechanical and the corrosion properties of Mg alloys are described. Alloying induces modifications of the microstructural characteristics leading to strengthening mechanisms, improving then the ductility and the mechanical properties of pure Mg.


2019 ◽  
Vol 33 (10) ◽  
pp. 1348-1372 ◽  
Author(s):  
Yang Chen ◽  
Jinhe Dou ◽  
Huijun Yu ◽  
Chuanzhong Chen

Magnesium-based alloys exhibit biodegradable, biocompatible and excellent mechanical properties which enable them to serve as ideal candidate biomedical materials. In particular, their biodegradable ability helps patients to avoid a second surgery. The corrosion rate, however, is too rapid to sustain the healing process. Alloying is an effective method to slow down the corrosion rate. However, currently magnesium alloys used as biomaterials are mostly commercial alloys without considering cytotoxicity from the perspective of biosafety. This article comprehensively reviews the status of various existing and newly developed degradable magnesium-based alloys specially designed for biomedical application. The effects of critical alloying elements, compositions, heat treatment and processing technology on the microstructure, mechanical properties and corrosion resistance of magnesium alloys are discussed in detail. This article covers Mg–Ca based, Mg–Zn based, Mg–Sr based, Mg–RE based and Mg–Cu-based alloy systems. The novel methods of fabricating Mg-based biomaterials and surface treatment on Mg based alloys for potential biomedical applications are summarized.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 985 ◽  
Author(s):  
Nikolaus P. Papenberg ◽  
Stefan Gneiger ◽  
Irmgard Weißensteiner ◽  
Peter J. Uggowitzer ◽  
Stefan Pogatscher

Interest in magnesium alloys and their applications has risen in recent years. This trend is mainly evident in casting applications, but wrought alloys are also increasingly coming into focus. Among the most common forming processes, forging is a promising candidate for the industrial production of magnesium wrought products. This review is intended to give a general introduction into the forging of magnesium alloys and to help in the practical realization of forged products. The basics of magnesium forging practice are described and possible problems as well as material properties are discussed. Several alloy systems containing aluminum, zinc or rare earth elements as well as biodegradable alloys are evaluated. Overall, the focus of the review is on the process control and processing parameters, from stock material to finished parts. A discussion of the mechanical properties is included. These data have been comprehensively reviewed and are listed for a variety of magnesium forging alloys.


2007 ◽  
Vol 23 ◽  
pp. 123-126
Author(s):  
Radu L. Orban ◽  
Mariana Lucaci

This paper investigates the effect of Fe, Cr and B additions, in small proportions, as alloying elements in Ni3Al with the purpose to reduce its intrinsic fragility and extrinsic embrittlement and to enhance, in the same time, its mechanical properties. It represents a development of some previous research works of the authors, proving that Ni3Al-Fe-Cr-B alloys obtained by reactive synthesis (SHS) starting from Mechanically Alloyed powder mixtures have superior both room temperature tensile strength and ductility, and compression ones at temperatures up to 800 °C, than pure Ni3Al. These create premises for their using as superalloys substitutes.


2016 ◽  
Vol 66 (1) ◽  
pp. 27-36 ◽  
Author(s):  
Amit Handa ◽  
Vikas Chawla

AbstractThe present study emphasizes on joints two industrially important materials AISI 304 with AISI 1021steels, produced by friction welding have been investigated. Samples were welded under different axial pressures ranging from 75MPa to 135MPa, at constant speed of 920rpm. The tensile strength, torsional strength, impact strength and micro hardness values of the weldments were determined and evaluated. Simultaneously the fractrography of the tensile tested specimens were carried out, so as to understand the failure analysis. It was observed that improved mechanical properties were noticed at higher axial pressures. Ductile failures of weldments were also observed at 120MPa and 135MPa axial pressures during fractography analysis.


2012 ◽  
Vol 736 ◽  
pp. 307-315 ◽  
Author(s):  
Murugavel Suresh ◽  
Satyam Suwas

Mg alloys show limited room temperature formability compared to its lightweight counterpart aluminium alloys, which is a main obstacle in using this metal for most of the structural applications. However, it is known that grain refinement and texture control are the two possibilities for the improvement of formability of magnesium alloys. Amongst the approaches attempted for the texture weakening, additions through of rare-earth (RE) elements have been found most effective. The relationship between the texture and ductility is well established. In this paper, the effect of rare earth addition on texture weakening has been summarized for various magnesium alloys under the two most common modes of deformation methods.


Sign in / Sign up

Export Citation Format

Share Document