Reliability and Characterization of Micro-Packages in a Wafer Level Au-Si Eutectic Vacuum Bonding Process

Author(s):  
Jay S. Mitchell ◽  
Gholamhassan R. Lahiji ◽  
Khalil Najafi

A Au-Si eutectic vacuum packaging process was evaluated using high sensitivity poly-Si Pirani vacuum sensors. Encapsulation of devices was achieved by bonding a silicon cap wafer to a device wafer using a Au-Si eutectic solder at above 390°C in a vacuum bonder. The Au-Si eutectic solder encircled the devices, providing an airtight seal. The Pirani gauges were encapsulated and tested over a period of several months in order to determine base pressures and leak/outgassing rates of the micro-cavities. Packaged devices without getters showed initial pressures from 2 to 12 Torr with initial leak/outgassing rates of −0.073 to 80 Torr/year. Using getters, pressures as low as 5 mTorr have been achieved with leak/outgassing rates of <10 mTorr/year. Trends in pressure over time seem to indicate outgassing (desorption of atoms from inside of the microcavity) as the primary mechanism for pressure change over time.


2011 ◽  
Vol 2011 (1) ◽  
pp. 000152-000160 ◽  
Author(s):  
Maaike Op de Beeck ◽  
Karen Qian ◽  
Paolo Fiorini ◽  
Karl Malachowski ◽  
Chris Van Hoof

A biocompatible packaging process for implantable electronic systems is described, combining biocompatibility and hermeticity with extreme miniaturization. In a first phase of the total packaging sequence, all chips are encapsulated in order to realize a bi-directional diffusion barrier preventing body fluids to leach into the package causing corrosion, and preventing IC materials such as Cu to diffuse into the body, causing various adverse effects. For cost effectiveness, this hermetic chip sealing is performed as post-processing at wafer level, using modifications of standard clean room (CR) fabrication techniques. Well known conductive and insulating CR materials are investigated with respect to their biocompatibility, diffusion barrier properties and sensitivity to corrosion. In a second phase of the packaging process, all chips of the final device should be electrically connected, applying a biocompatible metallization scheme using eg. gold or platinum. For electrodes being in direct contact with the tissue after implantation, IrOx metallization is proposed. Device assembly is the final packaging step, during which all system components such as electronics, passives, a battery,… will be interconnected. To provide sufficient mechanical support, all these components are embedded using a biocompatible elastomer such as PDMS.



2012 ◽  
Vol 9 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Maaike Op de Beeck ◽  
Karen Qian ◽  
Paolo Fiorini ◽  
Karl Malachowski ◽  
Chris Van Hoof

A biocompatible packaging process for implantable electronic systems is described, combining biocompatibility and hermeticity with extreme miniaturization. In Phase 1 of the total packaging sequence, all chips are encapsulated in order to realize a bidirectional diffusion barrier, preventing body fluids from leaching into the package, which would cause corrosion, and preventing IC materials such as Cu from diffusing into the body, which would cause various adverse effects. For cost-effectiveness, this hermetic chip sealing is performed as a postprocessing step at the wafer level using modifications of standard clean room (CR) fabrication techniques. Well-known conductive and insulating CR materials are investigated with respect to their biocompatibility, diffusion barrier properties, and sensitivity to corrosion. In Phase 2 of the packaging process, all chips of the final device should be electrically connected, applying a biocompatible metallization scheme using, for example, gold or platinum. For electrodes in direct contact with the tissue after implantation, IrOx metallization is proposed. Phase 3 of device assembly is the final packaging step, during which all system components, such as electronics, passives, a battery, among others, will be interconnected. To provide sufficient mechanical support, all these components are embedded using a biocompatible elastomer such as PDMS.



Author(s):  
T. M. Weatherby ◽  
P.H. Lenz

Crustaceans, as well as other arthropods, are covered with sensory setae and hairs, including mechanoand chemosensory sensillae with a ciliary origin. Calanoid copepods are small planktonic crustaceans forming a major link in marine food webs. In conjunction with behavioral and physiological studies of the antennae of calanoids, we undertook the ultrastructural characterization of sensory setae on the antennae of Pleuromamma xiphias.Distal mechanoreceptive setae exhibit exceptional behavioral and physiological performance characteristics: high sensitivity (<10 nm displacements), fast reaction times (<1 msec latency) and phase locking to high frequencies (1-2 kHz). Unusual structural features of the mechanoreceptors are likely to be related to their physiological sensitivity. These features include a large number (up to 3000) of microtubules in each sensory cell dendrite, arising from or anchored to electron dense rods associated with the ciliary basal body microtubule doublets. The microtubules are arranged in a regular array, with bridges between and within rows. These bundles of microtubules extend far into each mechanoreceptive seta and terminate in a staggered fashion along the dendritic membrane, contacting a large membrane surface area and providing a large potential site of mechanotransduction.



2017 ◽  
Vol 137 (2) ◽  
pp. 48-58
Author(s):  
Noriyuki Fujimori ◽  
Takatoshi Igarashi ◽  
Takahiro Shimohata ◽  
Takuro Suyama ◽  
Kazuhiro Yoshida ◽  
...  


Author(s):  
H. Sur ◽  
S. Bothra ◽  
Y. Strunk ◽  
J. Hahn

Abstract An investigation into metallization/interconnect failures during the process development phase of an advanced 0.35μm CMOS ASIC process is presented. The corresponding electrical failure signature was electrical shorting on SRAM test arrays and subsequently functional/Iddq failures on product-like test vehicles. Advanced wafer-level failure analysis techniques and equipment were used to isolate and identify the leakage source as shorting of metal lines due to tungsten (W) residue which was originating from unfilled vias. Further cross-section analysis revealed that the failing vias were all exposed to the intermetal dielectric spin-on glass (SOG) material used for filling the narrow spaces between metal lines. The outgassing of the SOG in the exposed regions of the via prior to and during the tungsten plug deposition is believed to be the cause of the unfilled vias. This analysis facilitated further process development in eliminating the failure mechanism and since then no failures of this nature have been observed. The process integration approach used to eliminate the failure is discussed.



2018 ◽  
Vol 618 ◽  
pp. A29 ◽  
Author(s):  
T. Trombetti ◽  
C. Burigana ◽  
G. De Zotti ◽  
V. Galluzzi ◽  
M. Massardi

Recent detailed simulations have shown that an insufficiently accurate characterization of the contamination of unresolved polarized extragalactic sources can seriously bias measurements of the primordial cosmic microwave background (CMB) power spectrum if the tensor-to-scalar ratio r ∼ 0.001, as predicted by models currently of special interest (e.g., Starobinsky’s R2 and Higgs inflation). This has motivated a reanalysis of the median polarization fraction of extragalactic sources (radio-loud AGNs and dusty galaxies) using data from the Planck polarization maps. Our approach, exploiting the intensity distribution analysis, mitigates or overcomes the most delicate aspects of earlier analyses based on stacking techniques. By means of simulations, we have shown that the residual noise bias on the median polarization fraction, Πmedian, of extragalactic sources is generally ≲0.1%. For radio sources, we have found Πmedian ≃ 2.83%, with no significant dependence on either frequency or flux density, in good agreement with the earlier estimate and with high-sensitivity measurements in the frequency range 5–40 GHz. No polarization signal is detected in the case of dusty galaxies, implying 90% confidence upper limits of Πdusty ≲ 2.2% at 353 GHz and of ≲3.9% at 217 GHz. The contamination of CMB polarization maps by unresolved point sources is discussed.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicolas Barizien ◽  
Morgan Le Guen ◽  
Stéphanie Russel ◽  
Pauline Touche ◽  
Florent Huang ◽  
...  

AbstractIncreasing numbers of COVID-19 patients, continue to experience symptoms months after recovering from mild cases of COVID-19. Amongst these symptoms, several are related to neurological manifestations, including fatigue, anosmia, hypogeusia, headaches and hypoxia. However, the involvement of the autonomic nervous system, expressed by a dysautonomia, which can aggregate all these neurological symptoms has not been prominently reported. Here, we hypothesize that dysautonomia, could occur in secondary COVID-19 infection, also referred to as “long COVID” infection. 39 participants were included from December 2020 to January 2021 for assessment by the Department of physical medicine to enhance their physical capabilities: 12 participants with COVID-19 diagnosis and fatigue, 15 participants with COVID-19 diagnosis without fatigue and 12 control participants without COVID-19 diagnosis and without fatigue. Heart rate variability (HRV) during a change in position is commonly measured to diagnose autonomic dysregulation. In this cohort, to reflect HRV, parasympathetic/sympathetic balance was estimated using the NOL index, a multiparameter artificial intelligence-driven index calculated from extracted physiological signals by the PMD-200 pain monitoring system. Repeated-measures mixed-models testing group effect were performed to analyze NOL index changes over time between groups. A significant NOL index dissociation over time between long COVID-19 participants with fatigue and control participants was observed (p = 0.046). A trend towards significant NOL index dissociation over time was observed between long COVID-19 participants without fatigue and control participants (p = 0.109). No difference over time was observed between the two groups of long COVID-19 participants (p = 0.904). Long COVID-19 participants with fatigue may exhibit a dysautonomia characterized by dysregulation of the HRV, that is reflected by the NOL index measurements, compared to control participants. Dysautonomia may explain the persistent symptoms observed in long COVID-19 patients, such as fatigue and hypoxia. Trial registration: The study was approved by the Foch IRB: IRB00012437 (Approval Number: 20-12-02) on December 16, 2020.



2021 ◽  
Author(s):  
Esther M. González‐Gil ◽  
Luis A. Moreno ◽  
Annunziata Nappo ◽  
Javier Santabárbara ◽  
Maike Wolters ◽  
...  


2012 ◽  
Author(s):  
Po-Yi Chang ◽  
Yi-Sha Ku
Keyword(s):  


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3385
Author(s):  
Jialu Ma ◽  
Jingchao Tang ◽  
Kaicheng Wang ◽  
Lianghao Guo ◽  
Yubin Gong ◽  
...  

A complex permittivity characterization method for liquid samples has been proposed. The measurement is carried out based on a self-designed microwave sensor with a split ring resonator (SRR), the unload resonant frequency of which is 5.05 GHz. The liquid samples in capillary are placed in the resonant zone of the fabricated senor for high sensitivity measurement. The frequency shift of 58.7 MHz is achieved when the capillary is filled with ethanol, corresponding a sensitivity of 97.46 MHz/μL. The complex permittivity of methanol, ethanol, isopropanol (IPA) and deionized water at the resonant frequency are measured and calibrated by the first order Debye model. Then, the complex permittivity of different concentrations of aqueous solutions of these materials are measured by using the calibrated sensor system. The results show that the proposed sensor has high sensitivity and accuracy in measuring the complex permittivity of liquid samples with volumes as small as 0.13 μL. It provides a useful reference for the complex permittivity characterization of small amount of liquid chemical samples. In addition, the characterization of an important biological sample (inositol) is carried out by using the proposed sensor.



Sign in / Sign up

Export Citation Format

Share Document