Fixed Vane Stator Development for Axial Fan Performance Improvement in Electronics Cooling

Author(s):  
Gavin D. Stanley

An analysis and development method for augmenting flow and pressure performance of electronic cooling axial fans using a fixed vane stator is established using classical hand calculations, 2-dimensional (2D) Computational Fluid Dynamics (CFD) analysis, data from a design of experiments, and 3-dimensional (3D) CFD modeling. Where the size of electronic enclosures may disallow an increase in diameter of axial fans but allow for an increase in depth; a fixed vane stator is implemented to recapture lost dynamic pressure associated with swirl and radial flow vectors from the axial fan blades thus augmenting the pressure/flow curve of the unit. Stator blade effectiveness is evaluated and optimized first using data associated with National Advisory Committee for Aeronautics (NACA) airfoil shapes and then using 2-dimensional (2D) CFD analyses on both the impeller and stator blades. CFD modeling approaches and solving methods are discussed. A Design of Experiments (DOE) is utilized to verify and optimize the performance of the stator vanes and identifies the effectiveness of the stator vane angle, curvature of the stator leading edge, and number of stator vanes. At a constant back pressure the best performing DOE geometry delivered a 22% improvement in flow at constant electrical power input and a 41% improvement in flow at constant acoustic noise. This result was confirmed using a 3D CFD modeling. This analysis and development method provides a good baseline for evaluating and choosing proper stator vane geometries for flow improvement in axial fans.

Author(s):  
Bo Luo ◽  
Wuli Chu ◽  
Wei Dong ◽  
Xiangyi Chen

Axial fans are widely used in modern industry and new regulations and stringent environmental concerns are prompting manufacturer to design efficient low-noise axial fans. This paper is focused on improving the aerodynamic performances and reducing the tonal noise at BPF and its harmonics by the optimum choice of lean-swept blade and the stacking line for the low-speed axial fan. The aerodynamic characteristics of the axial fan with a shroud are explored by CFD with ANASYS CFX. A hybrid method, SST turbulence model for flow and FW-H equation for acoustics, is chosen to predict the radiated noise. The accuracy and reliability of predicted aerodynamic and aeroacoustics results are verified by comparing both computation and experimental data. A number of modified blades with different leaned angle, swept angle and the stacking lines are modeled and analyzed, and the investigation into the optimum choice of lean-swept blade and the stacking line is conducted according to aerodynamic performances and tonal noise. Q-criterion which can visualize the major flow disturbances is applied for the purpose of identification of acoustic sources. The turbulent flow structures on the leading edge, tip and suction side of the blade are main noise sources. An optimal modification is determined through the analysis of the aerodynamic performances and noise, which is to achieve the desired performances by blade sweep and lean and adjusting the stacking line. The results show that aerodynamic and acoustic performances of the optimized fan are better than that of the original fan and the improvement is more obvious to change the stacking line with centre of gravity compare to blade sweep and lean for the low-speed axial fan.


1999 ◽  
Vol 121 (3) ◽  
pp. 558-568 ◽  
Author(s):  
M. B. Kang ◽  
A. Kohli ◽  
K. A. Thole

The leading edge region of a first-stage stator vane experiences high heat transfer rates, especially near the endwall, making it very important to get a better understanding of the formation of the leading edge vortex. In order to improve numerical predictions of the complex endwall flow, benchmark quality experimental data are required. To this purpose, this study documents the endwall heat transfer and static pressure coefficient distribution of a modern stator vane for two different exit Reynolds numbers (Reex = 6 × 105 and 1.2 × 106). In addition, laser-Doppler velocimeter measurements of all three components of the mean and fluctuating velocities are presented for a plane in the leading edge region. Results indicate that the endwall heat transfer, pressure distribution, and flowfield characteristics change with Reynolds number. The endwall pressure distributions show that lower pressure coefficients occur at higher Reynolds numbers due to secondary flows. The stronger secondary flows cause enhanced heat transfer near the trailing edge of the vane at the higher Reynolds number. On the other hand, the mean velocity, turbulent kinetic energy, and vorticity results indicate that leading edge vortex is stronger and more turbulent at the lower Reynolds number. The Reynolds number also has an effect on the location of the separation point, which moves closer to the stator vane at lower Reynolds numbers.


2022 ◽  
Vol 74 ◽  
pp. 104653
Author(s):  
Jiali Huo ◽  
Zhi Wang ◽  
Xiaoyang Luan ◽  
Mingju Jing ◽  
Shuya Hou ◽  
...  

2021 ◽  
pp. 2150267
Author(s):  
Bo Luo ◽  
Wuli Chu ◽  
Song Yan ◽  
Zhengjing Shen ◽  
Haoguang Zhang

The noise emitted from an axial fan has become one of the primary concerns for many industrial applications. This paper presents the work to predict the noise generation and investigate sound sources in a low speed axial fan. Computational fluid dynamics modeling is conducted using Scale Adaptive Simulation for the unsteady flow field. The sound predictions by the acoustic analogy are in good agreement with the experimental data. The results from this study show that the aerodynamic interaction between the blades and outlet vanes has a major contribution to the radiated noise spectrum. Two types of sources of narrowband humps are identified in the axial fan. The first is found at the leading edge of the blade tip, which is related to the interaction of coherent flow structures in the blade tip region. The second is found in the vicinity of the blade hub, which can be attributed to the recirculating flow and hub vortex. The noise below the frequency of 1500 Hz is mainly due to the blade-outlet vane aerodynamic interaction, manifested as the tonal sound at BPF and its harmonics, whereas above 1500 Hz the broadband component of sound is mainly related to the turbulent boundary layers.


Author(s):  
Benjamin Pardowitz ◽  
Ulf Tapken ◽  
Lars Neuhaus ◽  
Lars Enghardt

Rotating instability (RI) occurs at off-design conditions in axial compressors, predominantly in rotor configurations with large tip clearances. Characteristic spectral signatures with side-by-side peaks below the blade passing frequency (BPF) are typically referred to RI located in the clearance region next to the leading edge (LE). Each peak can be assigned to a dominant circumferential mode. RI is the source of the clearance noise (CN) and an indicator for critical operating conditions. Earlier studies at an annular cascade pointed out that RI modes of different circumferential orders occur stochastically distributed in time and independently from each other, which is contradictory to existing explanations of RI. Purpose of the present study is to verify this generally with regard to axial rotor configurations. Experiments were conducted on a laboratory axial fan stage mainly using unsteady pressure measurements in a sensor ring near the rotor LE. A mode decomposition based on cross spectral matrices was used to analyze the spectral and modal RI patterns upstream of the rotor. Additionally, a time-resolved analysis based on a spatial discrete-Fourier-transform (DFT) was applied to clarify the temporal characteristics of the RI modes and their potential interrelations. The results and a comparison with the previous findings on the annular cascade corroborate a new hypothesis about the basic RI mechanism. This hypothesis implies that instability waves of different wavelengths are generated stochastically in a shear layer resulting from a backflow in the tip clearance region.


Author(s):  
Igor Neifach ◽  
Gi-Don Na ◽  
Frank Kameier ◽  
Nils Springer ◽  
Marco Wichers

This paper deals with the reduction of aerodynamically generated noise in passenger car Cooling-Fan-Modules (CFM), caused by the interaction between the impeller and the downstream-located strut configuration of the axial fan. Even after the car engine is switched off, the fan remains active, as long as cooling is required for certain vehicle components. Especially after a car has been parked in closed parking areas, in close proximity to residential buildings or public places, the noise emission can be a problem. This issue is addressed by dampening the rotor-stator-interaction through passive construction measures. In order to ensure optimal noise reduction, 8 critical design features of the struts are identified and investigated using statistical design of experiment methods (DoE). Based on the results, dedicated insights about the effects of concrete strut features on significant regions of the acoustic fan spectrum are obtained. Furthermore, an optimized strut configuration is derived and metrologically validated using a polyoptimization method. Compared to a current serial baseline configuration, a reduction of the overall sound pressure level by 2.6 dB(A), as well as a reduction of the blade passage frequency tone by 17.6 dB(A) is achieved.


2017 ◽  
Vol 21 (suppl. 3) ◽  
pp. 553-564
Author(s):  
Johannes Walter ◽  
Dieter Wurz ◽  
Stefan Hartig ◽  
Martin Gabi

Axial fans are used in power plants for fresh air supply and flue gas transport. A typical configuration consists of an axial fan and annular diffuser which connects the fan to the following piping. In order to achieve a high efficiency of the con-figuration, not only the components have to be optimized but also their interaction. The present study focuses on the diffuser of the configuration. Experiments are performed on a diffuser-piping configuration to investigate the influence of the velocity profile at the fan outlet on the pressure recovery of the configuration. Two different diffuser inlet profiles are generated, an undisturbed profile and a profile with the typical outlet characteristics of a fan. The latter is generated by the superposition of screens in the inlet zone. The tests are conducted at a high Reynolds number (Re ? 4?105). Mean velocity profiles and wall shear stresses are measured with hydraulic methods (Prandtl and Preston tubes). The results show that there is a lack of momentum at the outer wall of the diffuser and high shear stresses at the inner wall in case of the undisturbed inflow profile. For the typical fan outlet profile it is vice versa. There are high wall shear stresses at the outer wall while the boundary layer of the inner wall lacks momentum. The pressure recovery of the undisturbed inflow configuration is in good agreement with other studies.


Mechanik ◽  
2018 ◽  
Vol 91 (7) ◽  
pp. 606-608
Author(s):  
Stanisław Wrzesień ◽  
Michał Frant ◽  
Maciej Majcher

The paper presents an analysis and comparison of basic characteristics of axial fans, both analytically and numerically. Such characteristics are: the characteristics of the total pressure, power and total efficiency as a function of the volumetric flow rate. The presented results showed significant quantitative and qualitative differences in the characteristics obtained by two methods. The usefulness of numerical methods in relation to the results of the initial analytical project was confirmed.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012004
Author(s):  
Yu A Borisov ◽  
V V Volkov-Muzilev ◽  
D A Kalashnikov ◽  
H S Khalife

Abstract The article discusses the issues of reducing the size of the cooling unit of the antenna of a radar station by improving the gas-dynamic processes occurring in the air-cooling unit. The results of the experimental studies of the gas flow in a plate-fin heat exchanger, being blown by one axial fan are presented. The feasibility of changing the number of axial fans for organizing a more uniform flow around the heat-exchange surfaces has been determined by calculation and theoretical methods. The calculation results are confirmed by experimental studies of the air flow in the segment of the heat exchanger, which is provided by a smaller fan.


1986 ◽  
Vol 108 (1) ◽  
pp. 53-59 ◽  
Author(s):  
L. M. Shaw ◽  
D. R. Boldman ◽  
A. E. Buggele ◽  
D. H. Buffum

Flush-mounted dynamic pressure transducers were installed on the center airfoil of a transonic oscillating cascade to measure the unsteady aerodynamic response as nine airfoils were simultaneously driven to provide 1.2 deg of pitching motion about the midchord. Initial tests were performed at an incidence angle of 0.0 deg and a Mach number of 0.65 in order to obtain results in a shock-free compressible flow field. Subsequent tests were performed at an angle of attack of 7.0 deg and a Mach number of 0.80 in order to observe the surface pressure response with an oscillating shock near the leading edge of the airfoil. Results are presented for interblade phase angles of 90 and −90 deg and at blade oscillatory frequencies of 200 and 500 Hz (semichord reduced frequencies up to about 0.5 at a Mach number of 0.80). Results from the zero-incidence cascade are compared with a classical unsteady flat-plate analysis. Flow visualization results depicting the shock motion on the airfoils in the high-incidence cascade are discussed. The airfoil pressure data are tabulated.


Sign in / Sign up

Export Citation Format

Share Document