An Investigation of the Effect of Nanoparticles on the Effectiveness of a Heat Exchanger

Author(s):  
V. Upender Rao ◽  
V. Sajith ◽  
T. Hanas ◽  
C. B. Sobhan

Convective heat transfer can be improved by enhancing the thermal conductivity of the fluid. It has been established that fluids containing suspended solid particles of metallic origin in nanoscale dimensions, display enhanced thermal conductivity. Nanoparticle suspensions have superior qualities than suspensions of larger sized particles, such as more particle surface area, less possibilities of agglomeration and clogging and better stability. An experimental investigation on the effect of the inclusion of nanoparticles into the cooling fluid on the effectiveness of a heat exchanger is presented in this paper. An experimental double pipe heat exchanger with the hot fluid flowing through the inner tube was used in the study. Aluminum oxide and copper oxide nanoparticles with a size range of 20 to 30 nm suspended in water using ultrasonic agitation was used as the hot fluid, and water was used as the cold fluid passing through the annulus. The concentration of the suspended nanoparticles was varied to investigate its effect on the performance of the exchanger. The operating temperature is also used as a parameter in the study. Typically, an enhancement of 4.5 to 7 percent was observed in the effectiveness of the heat exchanger for 0.26% weight fraction of the nanoparticles in suspension, in an operating temperature range of 50–70°C. The effectiveness of the heat exchanger was found to increase with the concentration of nanoparticles for both materials used.

Author(s):  
P. Bhattacharya ◽  
S. Nara ◽  
P. Vijayan ◽  
T. Tang ◽  
W. Lai ◽  
...  

A nanofluid is a fluid containing suspended solid particles, with sizes of the order of nanometers. The nanofluids are better conductors of heat than the base fluid itself. Therefore it is of interest to measure the effective thermal conductivity of such a nanofluid. We use temperature oscillation technique to measure the thermal conductivity of the nanofluid. However, first we evaluate the temperature oscillation technique as a tool to measure thermal conductivity of water. Then we validate our experimental setup by measuring the thermal conductivity of the aluminum oxide-water nanofluid and comparing our results with previously published work. Finally, we do a systematic series of measurements of the thermal conductivities of aluminum oxide-water nanofluids at various temperatures and explain the reasons behind the dependence of the enhancement in thermal conductivity of the nanofluid on temperature.


Author(s):  
Paritosh Singh

Abstract: Research in convective heat transfer using suspensions of nanometer sized solid particles in a base fluid started only over the past decade. Recent investigations on nanofluids, as such suspensions are often called, indicate that the suspended nanoparticles markedly change the transport properties and heat transfer characteristics of the suspension. The very first part of the research work summarizes about the various thermo physical properties of Al2O3 Nanofluid. In evacuated tube solar water heating system nanofluids are used as primary fluid and DM water as secondary fluid in Shell and Tube Heat Exchanger. The experimental analysis of Shell and Tube heat exchanger integrated with Evacuated tube solar collector have been carried out with two types of primary fluids. Research study of shell and tube heat exchanger is focused on heat transfer enhancement by usage of nano fluids. Conventional heat transfer fluids have inherently low thermal conductivity that greatly limits the heat exchange efficiency. The result of analysis shows that average relative variation in LMTD and overall heat transfer coefficient is 24.56% and 52.0% respectively. The payback period of system is reduced by 0.4 years due to saving is in replacement cost of Evacuated Tube Collector. Keywords: ETC; Nanofluid; LMTD; Thermal Conductivity; Overall heat transfer coefficient


2021 ◽  
Vol 945 (1) ◽  
pp. 012058
Author(s):  
Sayshar Ram Nair ◽  
Cheen Sean Oon ◽  
Ming Kwang Tan ◽  
S.N. Kazi

Abstract Heat exchangers are important equipment with various industrial applications such as power plants, HVAC industry and chemical industries. Various fluids that are used as working fluid in the heat exchangers such as water, oil, and ethylene glycol. Researchers have conducted various studies and investigations to improve the heat exchanger be it from material or heat transfer point of view. There have been attempts to create mixtures with solid particles suspended. This invention had some drawbacks since the pressure drop was compromised, on top of the occurrence of sedimentation or even erosion, which incurs higher maintenance costs. A new class of colloidal suspension fluid that met the demands and characteristics of a heat exchanger was then created. This novel colloidal suspension mixture was then and now addressed as “nanofluid”. In this study, the usage of functionalized graphene nanoplatelet (GNP) nanofluids will be studied for its thermal conductivity within an annular conduit with angled fins, which encourage swirling flows. The simulation results for the chosen GNP nanofluid concentrations have shown an enhancement in thermal conductivity and heat transfer coefficient compared to the corresponding base fluid thermal properties. The data from this research is useful in industrial applications which involve heat exchangers with finned tubes.


Author(s):  
I. A. Schastlivaya ◽  
V. P. Leonov ◽  
I. V. Tretyakov ◽  
A. Yu. Askinazi

Among titanium alloys, modern α- and pseudo-α-alloys occupy a special place due to the unique combination of their mechanical properties, corrosion resistance, low density and high specific strength, which determines their effectiveness in various industries. Analysis of structural materials used for heat exchange equipment of nuclear power plants showed that the increase in the efficiency and compactness of tube systems made of a-titanium alloys is constrained by their thermal conductivity characteristic, which does not exceed 89 W/(m·K) at a temperature of 20°C. An exception is the VT1-0 grade alloy, the scope of which is limited to a maximum operating temperature of no more than 250°C. The paper considers the results of studies of a new titanium alloy of the Ti-Zr-Al-O composition with increased thermal conductivity for pipe systems of power equipment. 


2021 ◽  
Author(s):  

The existing method for calculating the operating temperature of the gearbox housing is clarified by taking into account the thermal conductivity coefficient of the contact, the value of which depends on the materials used for the housing and frame, the finish of the supporting surfaces and their area, as well as on the tightening force of the screws that pull the housing to the frame. An example of calculating the temperature of the housing of a worm gear is given. Keywords: gearbox, heat sink, heat transfer coefficient, thermal conductivity coefficient of contact, thermal conductivity coefficient of materials, roughness parameter. [email protected]


Author(s):  
S. Shrestha ◽  
A. Hays ◽  
S. Thapa ◽  
D. Wood ◽  
D. Bailey ◽  
...  

This article investigates the use of advanced, high porosity thermally conductive foams and a thermal energy storage (TES) device for small scale thermal energy harvesting. In final application, it may be employed in various real world situations that include existing systems like thermoelectric generators (TEGs) and thermal scavenging systems that provide power output from freely available thermal sources. Experimental tests were conducted using various porosity metallic copper foams ranging from 85 % to 89 % porosity. Copper foams were selected to serve as the heat exchanger innards and examined for several key attributes. These included the ability of the foams to yield capillary action with working fluids like water or 3M™ HFE7200. Thermal energy absorption by the exchanger to the working fluid was also monitored. These results were compared to other exchangers based on capillary channel fabrication techniques as previously reported by the research team. Full characterization was based on operating temperature, measured thermal input, mass transfer rate, and heat transfer capability. Preliminary investigation of a matching, small-scale TES unit designed to integrate with the heat exchanger and a future thermoelectric for energy harvesting application was also conducted. Thermal storage was accomplished via solid-liquid phase change of a paraffin wax within the TES device forming a so-called “thermal battery.” In a final design, the TES includes what is defined by thermodynamics as heat pipes. The integrations of several heat pipes, made of copper tubing and filled with working fluid, mounted vertically and immersed in the wax medium will transfer heat to the wax by means of thermal conductivity and phase transition. This represents a first of its kind in this small-scale, thermal harvesting application. The specific tests performed in this initial work included one TES unit filled with a paraffin wax medium and a second that contained several copper vertically placed tubes surrounded by the paraffin wax. The overall thermal conductivity of the phase change medium (wax) was investigated for both constructions as was the ability of each to absorb thermal energy directly. Results indicated capillary action of the working fluid was possible via incorporation of copper foams within the heat exchanger. Maximum heat flux observed in exchanger tests was 0.27 kW/m2 given an operating temperature of 76.6 °C and 2.5W thermal input. Thermal storage tests indicated a maximum thermal capture rate of 0.91 W and phase change material thermal conductivity of 1.00 W/mK for the TES device constructed with copper tubing innards. This compared favorably to the baseline wax conductivity of approximately 0.32 W/mK. Future efforts will fully incorporate both the heat exchanger and matching TES device for a complete harvesting and thermal capture system. The ability of the exchanger to provide thermal energy for storage to the “thermal battery” will be monitored.


Author(s):  
Eaton E. Lattman ◽  
Thomas D. Grant ◽  
Edward H. Snell

In this chapter we note that solution scattering data can be divided into four regions. At zero scattering angle, the scattering provides information on molecular weight of the particle in solution. Beyond that, the scattering is influenced by the radius of gyration. As the scattering angle increases, the scattering is influenced by the particle shape, and finally by the interface with the particle and the solution. There are a number of important invariants that can be calculated directly from the data including molecular mass, radius of gyration, Porod invariant, particle volume, maximum particle dimension, particle surface area, correlation length, and volume of correlation. The meaning of these is described in turn along with their mathematical derivations.


2007 ◽  
Vol 352 ◽  
pp. 227-231 ◽  
Author(s):  
Qiang Shen ◽  
Z.D. Wei ◽  
Mei Juan Li ◽  
Lian Meng Zhang

AlN ceramics doped with yttrium oxide (Y2O3) as the sintering additive were prepared via the spark plasma sintering (SPS) technique. The sintering behaviors and densification mechanism were mainly investigated. The results showed that Y2O3 addition could promote the AlN densification. Y2O3-doped AlN samples could be densified at low temperatures of 1600-1700oC in 20-25 minutes. The AlN samples were characterized with homogeneous microstructure. The Y-Al-O compounds were created on the grain boundaries due to the reactions between Y2O3 and Al2O3 on AlN particle surface. With increasing the sintering temperature, AlN grains grew up, and the location of grain boundaries as well as the phase compositions changed. The Y/Al ratio in the aluminates increased, from Y3Al5O12 to YAlO3 and to Y4Al2O9. High-density, the growth of AlN grains and the homogenous dispersion of boundary phase were helpful to improve the thermal conductivity of AlN ceramics. The thermal conductivity of 122Wm-1K-1 for the 4.0 mass%Y2O3-doped AlN sample was reached.


2020 ◽  
pp. 096739112097811
Author(s):  
Munjula Siva Kumar ◽  
Santosh Kumar ◽  
Krushna Gouda ◽  
Sumit Bhowmik

The polymer composite material’s thermomechanical properties with fiber as reinforcement material have been widely studied in the last few decades. However, these fiber-based polymer composites exhibit problems such as fiber orientation, delamination, fiber defect along the length and bonding are the matter of serious concern in order to improve the thermomechanical properties and obtain isotropic material behavior. In the present investigation filler-based composite material is developed using natural hemp and high thermal conductive silver nanoparticles (SNP) and combination of dual fillers in neat epoxy polymer to investigate the synergetic influence. Among various organic natural fillers hemp filler depicts good crystallinity characteristics, so selected as a biocompatible filler along with SNP conductive filler. For enhancing their thermal conductivity and mechanical properties, hybridization of hemp filler along with silver nanoparticles are conducted. The composites samples are prepared with three different combinations such as sole SNP, sole hemp and hybrid (SNP and hemp) are prepared to understand their solo and hybrid combination. From results it is examined that, chemical treated hemp filler has to maximized its relative properties and showed, 40% weight % of silver nanoparticles composites have highest thermal conductivity 1.00 W/mK followed with hemp filler 0.55 W/mK and hybrid 0.76 W/mK composites at 7.5% of weight fraction and 47.5% of weight fraction respectively. The highest tensile strength is obtained for SNP composite 32.03 MPa and highest young’s modulus is obtained for hybrid composites. Dynamic mechanical analysis is conducted to find their respective storage modulus and glass transition temperature and that, the recorded maximum for SNP composites with 3.23 GPa and 90°C respectively. Scanning electron microscopy examinations clearly illustrated that formation of thermal conductivity chain is significant with nano and micro fillers incorporation.


Sign in / Sign up

Export Citation Format

Share Document