Reliability Evaluation of Electronic Devices Under Considering the Actual Use Conditions

Author(s):  
Shilin Liu ◽  
Qiang Yu ◽  
Michael Pecht

Semiconductor component manufacturers supply to different product manufacturers in a wide range of market segments, for different end use applications. The goal of electronic component qualification is to demonstrate component reliability under operating conditions in the end product configuration. While a manufacturer may have successfully qualified an individual component, operating stresses due to surrounding components or the system can decrease individual component reliability. Not accounting for these operating stresses resulting from other components or the system will lead to lower life than anticipated. Using a case study, the authors demonstrate how the fatigue life of a chip component mounted on a PCB is affected by powered components on the board in close proximity.


Author(s):  
Davide Biliotti ◽  
Alessandro Bianchini ◽  
Giuseppe Vannini ◽  
Elisabetta Belardini ◽  
Marco Giachi ◽  
...  

In the current industrial research on centrifugal compressors, manufacturers are showing increasing interest in the extension of the minimum stable flow limit in order to improve the operability of each unit. The aerodynamic performance of a compressor stage is indeed often limited before surge by the occurrence of diffuser rotating stall. This phenomenon generally causes an increase of the radial vibrations, which, however, is not always connected with a remarkable performance detriment. In case the operating curve has been limited by a mechanical criterion, i.e. based on the onset of induced vibrations, an investigation on the evolution of the aerodynamic phenomenon when the flow rate is further reduced can provide some useful information. In particular, the identification of the real thermodynamic limit of the system could allow one to verify if the new load condition could be tolerated by the rotordynamic system in terms of radial vibrations. Within this context, recent works showed that the aerodynamic loads due to a vaneless diffuser rotating stall can be estimated by means of test-rig experimental data of the most critical stage. Moreover, by including these data into a rotordynamic model of the whole machine, the expected vibration levels in real operating conditions can be satisfactorily predicted. To this purpose, a wide-range analysis was carried out on a large industrial database of impellers operating in presence of diffuser rotating stall; the analysis highlighted specific ranges for the resultant rotating force in terms of intensity and excitation frequency. Moving from these results, rotordynamic analyses have been performed on a specific case study to assess the final impact of these aerodynamic excitations.



2014 ◽  
Vol 137 (2) ◽  
Author(s):  
Davide Biliotti ◽  
Alessandro Bianchini ◽  
Giuseppe Vannini ◽  
Elisabetta Belardini ◽  
Marco Giachi ◽  
...  

In the current industrial research on centrifugal compressors, manufacturers are showing increasing interest in the extension of the minimum stable flow limit in order to improve the operability of each unit. The aerodynamic performance of a compressor stage is indeed often limited before surge by the occurrence of diffuser rotating stall. This phenomenon generally causes an increase of the radial vibrations, which, however, is not always connected with a remarkable performance detriment. In case the operating curve has been limited by a mechanical criterion, i.e., based on the onset of induced vibrations, an investigation on the evolution of the aerodynamic phenomenon when the flow rate is further reduced can provide some useful information. In particular, the identification of the real thermodynamic limit of the system could allow one to verify if the new load condition could be tolerated by the rotordynamic system in terms of radial vibrations. Within this context, recent works showed that the aerodynamic loads due to a vaneless diffuser rotating stall can be estimated by means of test-rig experimental data of the most critical stage. Moreover, by including these data into a rotordynamic model of the whole machine, the expected vibration levels in real operating conditions can be satisfactorily predicted. To this purpose, a wide-range analysis was carried out on a large industrial database of impellers operating in presence of diffuser rotating stall; the analysis highlighted specific ranges for the resultant rotating force in terms of intensity and excitation frequency. Moving from these results, rotordynamic analyses have been performed on a specific case study to assess the final impact of these aerodynamic excitations.



2021 ◽  
Vol 11 (16) ◽  
pp. 7392
Author(s):  
Bruno Andò ◽  
Salvatore Baglio ◽  
Ruben Crispino ◽  
Vincenzo Marletta

The problem of estimating the indoor position of a person or an object, also known as indoor localization, has gained a lot of interest in the last decades. Actually, this feature would be valuable in many application contexts, from logistics to robotic and Assistive Technology. Different solutions have been proposed in the literature, exploiting a wide range of approaches. This paper aims to provide a brief review of the state-of-the-art approaches in the field, as well as to present the RESIMA case study. The latter exploits an ultrasound-based indoor localization system and a User–Environment Interaction functionality, which allows for performing the continuous estimation of the distance between the end-user and objects in the environment. The latter is valuable to provide the end-user with efficient assistance during the environment exploitation. The main focus of this work is related to the overall description of the system architecture, the trilateration algorithm adopted for the sake of user localization and the estimation of the delay time produced by user-distance computation under different operating conditions.



Author(s):  
Arthur L. K. Yip ◽  
Jonathan R. Corney ◽  
Ananda P. Jagadeesan ◽  
Yi Qin

Product configurators have become an important enabler for enterprises to achieve product customization in order to address individual customers’ requirements. Despite adoption across a wide range of application domains from automotive to consumer goods, even state-of-the-art product configuration systems are limited in their ability to quickly respond to changes in the production systems that deliver the goods specified. Enabled by the emerging paradigm of cloud manufacturing, the authors propose a “configurable configurator” that is automatically updated to reflect changes in the supply chain. The paper reports the ongoing research and development towards a dynamically generated system that supports product configuration, visualization and assessment from the cloud manufacturing concept of Manufacturing-as-a-Service (MaaS). In addition to outlining the architecture of such a system, an overview of its modules and integration to the cloud manufacturing platform is described. Lastly, the case study of a customizable façade module is presented with two different scenarios to demonstrate the prototype implementation and validate the proposed approach.



Author(s):  
Philippe Charest ◽  
Paul Shepherd ◽  
Richard Harris ◽  
André Potvin ◽  
Claude Demers ◽  
...  

Modern architectural design has seen a shift towards iconic doubly-curved envelopes enclosing large column-free spaces. Gridshells have long been considered an efficient solution to such designs, but their actual use in practice has not spread worldwide. For elastic gridshells, their advantages in terms of substantial material savings can often be overshadowed by the significant challenges associated with their construction. Similarly, for rigid gridshells, the manufacture of a large number of different members and nodal connections is often a barrier to their implementation. This paper proposes an effective way of designing, fabricating and erecting gridshells. The "Patchwork Gridshell" consists of a number of efficient elastic gridshell patches assembled using rigid gridshell frames. It can easily generate a number of different configurations, use a wide range of materials, and allows more architectural expression of practical long-span forms. The benefits of combining the ingenuously simple efficiency of elastic lattices and the power of digital fabrication are demonstrated by digitally rebuilding four alternative configurations of the Japan Pavilion of the Hanover Expo 2000 as a case study. The result is a flexible digital workflow which creates large column-free spaces that are capable of being constructed efficiently by non- specialist contractors.



Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3199 ◽  
Author(s):  
Davide Iaria ◽  
Homam Nipkey ◽  
Jafar Al Zaili ◽  
Abdulnaser Sayma ◽  
Mohsen Assadi

The aim of this paper is to present a thermo-economic model of a microturbine for solar dish applications, which demonstrates the applicability and accuracy of the model for off-design performance evaluation and techno-economic optimisation purposes. The model is built using an object-oriented programming approach. Each component is represented using a class made of functions that perform a one-dimensional physical design, off-design performance analysis and the component cost evaluation. Compressor, recuperator, receiver and turbine models are presented and validated against experimental data available in literature, and each demonstrated good accuracy for a wide range of operating conditions. A 7-kWe microturbine and solar irradiation data available for Rome between 2004 and 2005 were considered as a case study, and the thermo-economic analysis of the plant was performed to estimate the levelised cost of electricity based on the annual performance of the plant. The overall energy produced by the plant is 10,682 kWh, the capital cost has been estimated to be EUR 27,051 and, consequently, the specific cost of the plant, defined as the ratio between the cost of components and output power in design condition, has been estimated to be around EUR 3980/kWe. Results from the levelised cost of electricity (LCOE) analysis demonstrate a levelised cost of electricity of EUR 22.81/kWh considering a plant lifetime of 25 years. The results of the present case study have been compared with the results from IPSEpro 7 where the same component characteristic maps and operational strategy were considered. This comparison was aimed to verify the component matching procedure adopted for the present model. A plant sizing optimisation was then performed to determine the plant size which minimises the levelised cost of electricity. The design space of the optimisation variable is limited to the values 0.07–0.16 kg/s. Results of the optimisation demonstrate a minimum LCOE of 21.5 [EUR/kWh] for a design point mass flow rate of about 0.11 kg/s. This corresponds to an overall cost of the plant of around EUR 32,600, with a dish diameter of 9.4 m and an annual electricity production of 13,700 [kWh].



Author(s):  
David A. Ansley

The coherence of the electron flux of a transmission electron microscope (TEM) limits the direct application of deconvolution techniques which have been used successfully on unmanned spacecraft programs. The theory assumes noncoherent illumination. Deconvolution of a TEM micrograph will, therefore, in general produce spurious detail rather than improved resolution.A primary goal of our research is to study the performance of several types of linear spatial filters as a function of specimen contrast, phase, and coherence. We have, therefore, developed a one-dimensional analysis and plotting program to simulate a wide 'range of operating conditions of the TEM, including adjustment of the:(1) Specimen amplitude, phase, and separation(2) Illumination wavelength, half-angle, and tilt(3) Objective lens focal length and aperture width(4) Spherical aberration, defocus, and chromatic aberration focus shift(5) Detector gamma, additive, and multiplicative noise constants(6) Type of spatial filter: linear cosine, linear sine, or deterministic



2020 ◽  
pp. 39-48
Author(s):  
B. O. Bolshakov ◽  
◽  
R. F. Galiakbarov ◽  
A. M. Smyslov ◽  
◽  
...  

The results of the research of structure and properties of a composite compact from 13 Cr – 2 Мо and BN powders depending on the concentration of boron nitride are provided. It is shown that adding boron nitride in an amount of more than 2% by weight of the charge mixture leads to the formation of extended grain boundary porosity and finely dispersed BN layers in the structure, which provides a high level of wearing properties of the material. The effect of boron nitride concentration on physical and mechanical properties is determined. It was found that the introduction of a small amount of BN (up to 2 % by weight) into the compacts leads to an increase in plasticity, bending strength, and toughness by reducing the friction forces between the metal powder particles during pressing and a more complete grain boundary diffusion process during sintering. The formation of a regulated structure-phase composition of powder compacts of 13 Cr – 2 Mо – BN when the content of boron nitride changes in them allows us to provide the specified physical and mechanical properties in a wide range. The obtained results of studies of the physical and mechanical characteristics of the developed material allow us to reasonably choose the necessary composition of the powder compact for sealing structures of the flow part of steam turbines, depending on their operating conditions.



2013 ◽  
Vol 16 (1) ◽  
pp. 59-67

<p>The Soil Science Institute of Thessaloniki produces new digitized Soil Maps that provide a useful electronic database for the spatial representation of the soil variation within a region, based on in situ soil sampling, laboratory analyses, GIS techniques and plant nutrition mathematical models, coupled with the local land cadastre. The novelty of these studies is that local agronomists have immediate access to a wide range of soil information by clicking on a field parcel shown in this digital interface and, therefore, can suggest an appropriate treatment (e.g. liming, manure incorporation, desalination, application of proper type and quantity of fertilizer) depending on the field conditions and cultivated crops. A specific case study is presented in the current work with regards to the construction of the digitized Soil Map of the regional unit of Kastoria. The potential of this map can easily be realized by the fact that the mapping of the physicochemical properties of the soils in this region provided delineation zones for differential fertilization management. An experiment was also conducted using remote sensing techniques for the enhancement of the fertilization advisory software database, which is a component of the digitized map, and the optimization of nitrogen management in agricultural areas.</p>



1984 ◽  
Vol 19 (1) ◽  
pp. 87-100
Author(s):  
D. Prasad ◽  
J.G. Henry ◽  
P. Elefsiniotis

Abstract Laboratory studies were conducted to demonstrate the effectiveness of diffused aeration for the removal of ammonia from the effluent of an anaerobic filter treating leachate. The effects of pH, temperature and air flow on the process were studied. The coefficient of desorption of ammonia, KD for the anaerobic filter effluent (TKN 75 mg/L with NH3-N 88%) was determined at pH values of 9, 10 and 11, temperatures of 10, 15, 20, 30 and 35°C, and air flow rates of 50, 120, and 190 cm3/sec/L. Results indicated that nitrogen removal from the effluent of anaerobic filters by ammonia desorption was feasible. Removals exceeding 90% were obtained with 8 hours aeration at pH of 10, a temperature of 20°C, and an air flow rate of 190 cm3/sec/L. Ammonia desorption coefficients, KD, determined at other temperatures and air flow rates can be used to predict ammonia removals under a wide range of operating conditions.



Sign in / Sign up

Export Citation Format

Share Document