Analysis of the Rotordynamic Response of a Centrifugal Compressor Subject to Aerodynamic Loads due to Rotating Stall

Author(s):  
Davide Biliotti ◽  
Alessandro Bianchini ◽  
Giuseppe Vannini ◽  
Elisabetta Belardini ◽  
Marco Giachi ◽  
...  

In the current industrial research on centrifugal compressors, manufacturers are showing increasing interest in the extension of the minimum stable flow limit in order to improve the operability of each unit. The aerodynamic performance of a compressor stage is indeed often limited before surge by the occurrence of diffuser rotating stall. This phenomenon generally causes an increase of the radial vibrations, which, however, is not always connected with a remarkable performance detriment. In case the operating curve has been limited by a mechanical criterion, i.e. based on the onset of induced vibrations, an investigation on the evolution of the aerodynamic phenomenon when the flow rate is further reduced can provide some useful information. In particular, the identification of the real thermodynamic limit of the system could allow one to verify if the new load condition could be tolerated by the rotordynamic system in terms of radial vibrations. Within this context, recent works showed that the aerodynamic loads due to a vaneless diffuser rotating stall can be estimated by means of test-rig experimental data of the most critical stage. Moreover, by including these data into a rotordynamic model of the whole machine, the expected vibration levels in real operating conditions can be satisfactorily predicted. To this purpose, a wide-range analysis was carried out on a large industrial database of impellers operating in presence of diffuser rotating stall; the analysis highlighted specific ranges for the resultant rotating force in terms of intensity and excitation frequency. Moving from these results, rotordynamic analyses have been performed on a specific case study to assess the final impact of these aerodynamic excitations.


2014 ◽  
Vol 137 (2) ◽  
Author(s):  
Davide Biliotti ◽  
Alessandro Bianchini ◽  
Giuseppe Vannini ◽  
Elisabetta Belardini ◽  
Marco Giachi ◽  
...  

In the current industrial research on centrifugal compressors, manufacturers are showing increasing interest in the extension of the minimum stable flow limit in order to improve the operability of each unit. The aerodynamic performance of a compressor stage is indeed often limited before surge by the occurrence of diffuser rotating stall. This phenomenon generally causes an increase of the radial vibrations, which, however, is not always connected with a remarkable performance detriment. In case the operating curve has been limited by a mechanical criterion, i.e., based on the onset of induced vibrations, an investigation on the evolution of the aerodynamic phenomenon when the flow rate is further reduced can provide some useful information. In particular, the identification of the real thermodynamic limit of the system could allow one to verify if the new load condition could be tolerated by the rotordynamic system in terms of radial vibrations. Within this context, recent works showed that the aerodynamic loads due to a vaneless diffuser rotating stall can be estimated by means of test-rig experimental data of the most critical stage. Moreover, by including these data into a rotordynamic model of the whole machine, the expected vibration levels in real operating conditions can be satisfactorily predicted. To this purpose, a wide-range analysis was carried out on a large industrial database of impellers operating in presence of diffuser rotating stall; the analysis highlighted specific ranges for the resultant rotating force in terms of intensity and excitation frequency. Moving from these results, rotordynamic analyses have been performed on a specific case study to assess the final impact of these aerodynamic excitations.



2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Christopher G. Cooley ◽  
Tan Chai

This study investigates the vibration of and power harvested by typical electromagnetic and piezoelectric vibration energy harvesters when applied to vibrating host systems that rotate at constant speed. The governing equations for these electromechanically coupled devices are derived using Newtonian mechanics and Kirchhoff's voltage law. The natural frequency for these devices is speed-dependent due to the centripetal acceleration from their constant rotation. Resonance diagrams are used to identify excitation frequencies and speeds where these energy harvesters have large amplitude vibration and power harvested. Closed-form solutions are derived for the steady-state response and power harvested. These devices have multifrequency dynamic response due to the combined vibration and rotation of the host system. Multiple resonances are possible. The average power harvested over one oscillation cycle is calculated for a wide range of operating conditions. Electromagnetic devices have a local maximum in average harvested power that occurs near a specific excitation frequency and rotation speed. Piezoelectric devices, depending on their mechanical damping, can have two local maxima of average power harvested. Although these maxima are sensitive to small changes in the excitation frequency, they are much less sensitive to small changes in rotation speed.



Author(s):  
S Sarkar

The results presented here are part of a detailed programme measuring the aerodynamics of a high specific speed mixed flow pump impeller over a wide range of operating conditions, including its behaviour in the unsteady stalled regime. The aim is to elucidate the physics of the flow through such an impeller. The noticeable features are the formation of part-span rotating stall cells having no periodicity and organized structure at reduced flow and also the shifting positions of reversal flow pockets as the flowrate changes. Measurements of loss and its variation with span-wise positions and flowrates enable the variation of local efficiency to be determined. The overall flow picture is similar to that expected in an axial flow impeller, though the present impeller displays a narrow stall hysteresis loop almost right through its operating range.



Tribology ◽  
2005 ◽  
Author(s):  
A. Fawzy ◽  
Y. K. Youness ◽  
A. M. A. El-Butch ◽  
I. M. Ibrahim

The friction force between coupled machine members in relative motion exerts sometimes significant influence on system dynamic behavior, giving rise to undesirable self-excited oscillation. The aim of this paper is to investigate the contribution of each design parameter and operating conditions on the system dynamic performance theoretically and experimentally. The theory presents a comparative analysis between different dynamic coefficient of friction which may exist between the sliding mass which connected to two springs and a harmonic base excitation surfaces. Furthermore, results are obtained for arbitrary values of natural frequency, excitation frequency and amplitude of exciting base displacement. A test rig has been constructed to test several contacting material combinations. Results for sliding mass acceleration have been obtained for a wide range of exciting base frequencies, masses of slider and amplitudes of exciting base displacement, good agreement with theoretical results have been achieved.



1987 ◽  
Author(s):  
A. N. Abdel-Hamid ◽  
U. Haupt ◽  
M. Rautenberg

Self-excited flow oscillations in a high performance centrifugal compressor with vaned diffuser have been experimentally investigated over a wide range of operating conditions. The space and time characteristics of the flow oscillations in the compressor from inlet to outlet were measured using fast response dynamic pressure transducers on the shroud wall and blade mounted straingages. Multi-channel signal analysis techniques in the frequency domain clearly identified the onset of the oscillations and its type. Rotating stall was found to exist in certain regimes of the compressor map but did not necessarily preceed the occurrence of the surge phenomena. At compressor speeds below 13600 rpm the rotating non-uniform flow when it occurred was composed of three lobes and rotated at approximately 5–6 % of the impeller speed. Above 13600 rpm the rotating pattern changed to two lobes and rotated at approximately 16–20 % of the impeller speed. The direction of rotation of both patterns was opposite to that of the impeller. Analysis of the performance characteristics of the compressor components prior to and during flow oscillations indicates that the relative magnitude of the flow fluctuations in the semi-vaneless space downstream of the impeller are the largest which points towards the close relationship between the conditions leading to the onset of the oscillations and the flow details in this region of the compressor. Additional confirmation of this relationship is obtained from comparison between the results obtained in this study and those obtained when the same compressor was operated with a vaneless diffuser.



2021 ◽  
Vol 11 (16) ◽  
pp. 7392
Author(s):  
Bruno Andò ◽  
Salvatore Baglio ◽  
Ruben Crispino ◽  
Vincenzo Marletta

The problem of estimating the indoor position of a person or an object, also known as indoor localization, has gained a lot of interest in the last decades. Actually, this feature would be valuable in many application contexts, from logistics to robotic and Assistive Technology. Different solutions have been proposed in the literature, exploiting a wide range of approaches. This paper aims to provide a brief review of the state-of-the-art approaches in the field, as well as to present the RESIMA case study. The latter exploits an ultrasound-based indoor localization system and a User–Environment Interaction functionality, which allows for performing the continuous estimation of the distance between the end-user and objects in the environment. The latter is valuable to provide the end-user with efficient assistance during the environment exploitation. The main focus of this work is related to the overall description of the system architecture, the trilateration algorithm adopted for the sake of user localization and the estimation of the delay time produced by user-distance computation under different operating conditions.



Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3199 ◽  
Author(s):  
Davide Iaria ◽  
Homam Nipkey ◽  
Jafar Al Zaili ◽  
Abdulnaser Sayma ◽  
Mohsen Assadi

The aim of this paper is to present a thermo-economic model of a microturbine for solar dish applications, which demonstrates the applicability and accuracy of the model for off-design performance evaluation and techno-economic optimisation purposes. The model is built using an object-oriented programming approach. Each component is represented using a class made of functions that perform a one-dimensional physical design, off-design performance analysis and the component cost evaluation. Compressor, recuperator, receiver and turbine models are presented and validated against experimental data available in literature, and each demonstrated good accuracy for a wide range of operating conditions. A 7-kWe microturbine and solar irradiation data available for Rome between 2004 and 2005 were considered as a case study, and the thermo-economic analysis of the plant was performed to estimate the levelised cost of electricity based on the annual performance of the plant. The overall energy produced by the plant is 10,682 kWh, the capital cost has been estimated to be EUR 27,051 and, consequently, the specific cost of the plant, defined as the ratio between the cost of components and output power in design condition, has been estimated to be around EUR 3980/kWe. Results from the levelised cost of electricity (LCOE) analysis demonstrate a levelised cost of electricity of EUR 22.81/kWh considering a plant lifetime of 25 years. The results of the present case study have been compared with the results from IPSEpro 7 where the same component characteristic maps and operational strategy were considered. This comparison was aimed to verify the component matching procedure adopted for the present model. A plant sizing optimisation was then performed to determine the plant size which minimises the levelised cost of electricity. The design space of the optimisation variable is limited to the values 0.07–0.16 kg/s. Results of the optimisation demonstrate a minimum LCOE of 21.5 [EUR/kWh] for a design point mass flow rate of about 0.11 kg/s. This corresponds to an overall cost of the plant of around EUR 32,600, with a dish diameter of 9.4 m and an annual electricity production of 13,700 [kWh].



Author(s):  
C.-P. Roger Ku ◽  
Hooshang Heshmat

This paper presents the results of an investigation into the dynamic structural properties of self-acting compliant foil journal bearings. A test facility with a journal supported by a compliant foil journal bearing was built. The nonrotating journal was driven by two shakers which were used to simulate the dynamic forces acting on the bump foil strips. The structural stiffness and equivalent viscous damping coefficients are calculated based on the experimental measurements for a wide range of operating conditions. The results are compared to the analytical predictions obtained by a theoretical model developed earlier, and the effects of frequency are investigated. Both theoretical and experimental results show that an increase in the excitation frequency decreases the direct damping term. The effect of frequency on the cross-coupling terms is much less than on the direct terms.



Author(s):  
Shilin Liu ◽  
Qiang Yu ◽  
Michael Pecht

Semiconductor component manufacturers supply to different product manufacturers in a wide range of market segments, for different end use applications. The goal of electronic component qualification is to demonstrate component reliability under operating conditions in the end product configuration. While a manufacturer may have successfully qualified an individual component, operating stresses due to surrounding components or the system can decrease individual component reliability. Not accounting for these operating stresses resulting from other components or the system will lead to lower life than anticipated. Using a case study, the authors demonstrate how the fatigue life of a chip component mounted on a PCB is affected by powered components on the board in close proximity.



Author(s):  
David A. Ansley

The coherence of the electron flux of a transmission electron microscope (TEM) limits the direct application of deconvolution techniques which have been used successfully on unmanned spacecraft programs. The theory assumes noncoherent illumination. Deconvolution of a TEM micrograph will, therefore, in general produce spurious detail rather than improved resolution.A primary goal of our research is to study the performance of several types of linear spatial filters as a function of specimen contrast, phase, and coherence. We have, therefore, developed a one-dimensional analysis and plotting program to simulate a wide 'range of operating conditions of the TEM, including adjustment of the:(1) Specimen amplitude, phase, and separation(2) Illumination wavelength, half-angle, and tilt(3) Objective lens focal length and aperture width(4) Spherical aberration, defocus, and chromatic aberration focus shift(5) Detector gamma, additive, and multiplicative noise constants(6) Type of spatial filter: linear cosine, linear sine, or deterministic



Sign in / Sign up

Export Citation Format

Share Document