A Systematic Approach for Mitigating Geohazards in Pipeline Design and Construction

Author(s):  
James V. Hengesh ◽  
Michael Angell ◽  
William R. Lettis ◽  
Jeffery L. Bachhuber

Pipeline projects are often faced with the challenge of balancing efficient design and construction with mitigation of potential hazards posed by low probability events, such as earthquakes and landslides. Though systematic characterization of geological hazards is sometimes perceived as an added project expense, failure to recognize and mitigate hazards at an early stage can lead to schedule delays and substantial liability, repair, and business interruption costs. For example, it is estimated that failure of the 660-mm Trans-Ecuador pipeline in the 1987 earthquake cost roughly $850 million in repairs and lost revenue. In order to minimize, mitigate, or avoid geological hazards, pipeline design projects can implement a phased investigative approach to refine route selection and develop parameters for detailed design. These studies provide information on geological conditions that progress from the general to specific and have associated uncertainties that decrease with increasing focus of investigations. A geohazard investigation for a pipeline project should begin with a Phase I “desk-top” study to evaluate regional geological conditions, establish a project specific information system, and make a preliminary assessment of landslide, fault rupture, liquefaction, geotechnical and constructability issues that will need to be considered in later phases of design and construction. Although the results of desk-top studies are limited and have large associated uncertainties, the initial results help to refine route selection and/or identify areas that may require hazard mitigation measures. Phase II investigations include acquisition of detailed corridor specific data such as topography and aerial photography, development of geological strip maps, and assessment of the pipeline corridor by an expert-level Terrain Evaluation Team (TET) with broad knowledge of geo-engineering issues. Assessment of the corridor by the TET results in recommendations for route refinement to avoid hazardous terrain, and identification of areas requiring detailed Phase III investigations. Phase III consists of detailed investigations of critical geohazard features to develop parameters for final design of hazard mitigation measures (e.g. fault crossing design). The geohazard features are characterized to determine permanent ground deformation (PGD) parameters, such as location, geometry, amount and direction of displacement, and recurrence rates. Interaction with the pipeline design team should be continued through all three phases to maximize efficiency and ensure timely integration of results in route selection, refinement and design. Examples provided from projects in Turkey, California, and the Indian Ocean demonstrate the successful implementation of this phased investigative approach to characterizing and mitigating geohazards for both onshore and offshore pipeline projects. Implementation of this approach has resulted in significant project cost savings and reduced risk.

Author(s):  
James M. Oswell

The design and construction of a northern pipeline differs in many respects from southern pipelines. The remoteness and environmental sensitivity of the region are only two commonly acknowledged issues. The geotechnical aspects of a pipeline in continuous permafrost or discontinuous permafrost are also different from pipeline designs in more temperate regions. There have been several successfully constructed and operated pipelines in northern Canada and Alaska. These facilities provide an important precedence for the design and construction of future northern pipelines. The geotechnical aspects covered in this paper will include the differences in oil and gas pipelines relative to geothermal impact on the ground, the importance of route selection and terrain analysis, protection of permafrost, slopes design, frost heave and thaw settlement impact and mitigation, and a discussion of some of the lessons learned from previous projects.


Impact ◽  
2020 ◽  
Vol 2020 (3) ◽  
pp. 26-28
Author(s):  
Tsukasa Ohba

Volcanology is an extremely important scientific discipline. Shedding light on how and why volcanoes erupt, how eruptions can be predicted and their impact on humans and the environment is crucial to public safety, economies and businesses. Understanding volcanoes means eruptions can be anticipated and at-risk communities can be forewarned, enabling them to implement mitigation measures. Professor Tsukasa Ohba is a scientist based at the Graduate School of International Resource Studies, Akita University, Japan, and specialises in volcanology and petrology. Ohba and his team are focusing on volcanic phenomena including: phreatic eruptions (a steam-driven eruption driven by the heat from magma interacting with water); lahar (volcanic mudflow); and monogenetic basalt eruptions (which consist of a group of small monogenetic volcanoes, each of which erupts only once). The researchers are working to understand the mechanisms of these phenomena using Petrology. Petrology is one of the traditional methods in volcanology but has not been applied to disastrous eruptions before. The teams research will contribute to volcanic hazard mitigation.


ICCD ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 616-617
Author(s):  
Anjas Handayani

During the first quarter of 2019, from January to March 2019 there were 45 fire incidents in the city of Bekasi with losses ranging from Rp. 2,365,000,000 (based on data from the Bekasi City fire dept Service). From 45 events in the city of Bekasi, 3 of them occurred in Jatisampurna sub-district. Based on the type of object 45 events 15 of which are residential houses.With the data above, it can be said that the risk of fire can cause material and immaterial losses and can also cause trauma to fire victims. The importance of knowledge and information on fire hazard mitigation and how mitigation measures against fire hazards need to be conveyed to people who live in densely populated areas where the risk of fire is quite large. Laws or regulations on fire are not yet widely owned by most regions, so there are no special rules that can be covered in relation to fire risk.


2019 ◽  
Vol 9 (2) ◽  
pp. 152
Author(s):  
Rahmat Setyo Yuliatmoko ◽  
Telly Kurniawan

The amount of stress released by an earthquake can be calculated with a stress drop, the stress ratio before and after an earthquake where the stress accumulated in a fault or a subduction zone is immediately released during an earthquake. The purpose of this research is to calculate the amount of stress drop in faults and subduction in Maluku and Halmahera and their variations and relate them to the geological conditions in the area so that the tectonic characteristics in the area can be identified. This research employed mathematical analysis and the Nelder Mead Simplex nonlinear inversion methods. The results show that Maluku and Halmahera are the area with complex tectonic conditions and large earthquake impacts. The Maluku sea earthquake generated a stress drop of 0.81 MPa with a reverse fault mechanism in the zone of subduction, while for the Halmahera earthquake the stress drop value was 52.72 MPa, a typical strike-slip mechanism in the fault zone. It can be concluded that there is a difference in the stress drop between the subduction and fault zones; the stress drop in the fault was greater than that in the subduction zone due to different rock structure and faulting mechanisms as well as differences in the move slip rate that plays a role in the process of holding out the stress on a rock. This information is very important to know the amount of pressure released from the earthquake which has a very large impact as part of disaster mitigation measures.


2021 ◽  
Author(s):  
Manudeo Narayan Singh ◽  
Shobhit Singh ◽  
Arnab Laha ◽  
Kanchan Mishra

<p>The concept of geomorphic connectivity is being widely used since last two decades to understand and explain the various earth surface processes and dynamics. Its applicability to understand inter- and cross-scale process-response systems is now well established. In the present work, we have evaluated the applicability of the geomorphic connectivity framework (Singh et al., 2020, ESPL) for managing and mitigating various geological hazards. For an effective hazard mitigation and management planning, we need to know (a) source of hazard, (b) hazard propagation pathways, (c) probable affected areas, and (d) identification of escape routes/pathways. The connectivity concept can be effectively utilised to satisfy aforementioned requirements. For example, sediment and hydrological connectivity can be used to evaluate the potential pathways, identify sources and affected areas, and to assess return periods of fluvial-related hazards such as debris flow and riverine flash floods. Similarly, the potential sites of landslide, stream congestions (and hence, flash flood)- can be identified by evaluating the channel-slope sediment connectivity and longitudinal hydrological connectivity. The concept of landscape connectivity can play a pivotal role in understanding the forest fire probabilities by evaluating the connectivity between various fire-prone patches of forests, fuel, and the spatial positions of fire-breaking landscape patches. Based on connectivity concepts, the potential paths of forest fire propagation can be demarcated in advance and can play a crucial role in forest fire mitigation. Other than identifying the risk-prone zones with respect to various hazards, connectivity concept can also be used to plan evacuation routes as well. Therefore, we propose that the geomorphic connectivity framework can be a robust tool to manage and mitigate various geological hazards.</p>


2021 ◽  
Author(s):  
Majed Nahed Alrabeh ◽  
Zulkiflie Bin Samsudine ◽  
Salvador Alejandro Ruvalcaba Velarde ◽  
Faisal Mohammed Alhajri

Abstract The objective of this paper is to present the findings obtained from a detailed engineering evaluation resulting from trial testing two state-of-the-art surface horizontal pumping systems (HPS's) in two water supply wells. The two horizontal pumping systems were deployed as an alternative to downhole electrical submersible pumps (ESPs) to provide the benefits of eliminating ESP workover costs, modularity regarding wellsite deployments, and enhanced maintenance operations. For this trial test evaluation method, two HPS's were deployed to boost water production to the water injection plant (WIP). To ensure a thorough evaluation, the trial test well candidates were designed to accommodate both a subsurface ESP as well as a surface HPS to provide an accurate comparison, and representation, between the different artificial lift methods. The trial test and comparison method described in this paper focused primarily on the following items; maintenance and well intervention requirements, evaluation of operational availability, including potential for cavitation and effects of interference, maximum production rates, as well as root cause engineering evaluations for mechanical seals and cooling unit auxiliary motors. Various best practices and mitigation measures were identified and are presented in this paper. With regard to the results, it was observed that each artificial lift method comprised a set of advantages and disadvantages. The decision on which type of technology to use can be dependent on several factors. Overall, the HPS's demonstrated the ability to supply water production to the WIP. The HPS did experience operational challenges in providing higher production requirements. Additional challenges were also observed in the sealing mechanism as well as the auxiliary cooling unit. Precautionary pump tripping automated protocols were taken to prevent pump cavitation due to sub-optimal intake pressure resulting from possible interference. The HPS, unlike the ESPs, did not require any workover as it is located at the wellsite and therefore resulted in substantial cost savings and was easy to maintain due to its surface application. In summary, this paper adds a new and very beneficial evaluation of HPS's, and highlights best practices and lessons learned to the existing body of literature. The new information discussed in this paper is highly beneficial to engineering selections of artificial lift methods and to the successful implementation of HPS's in the industry.


2014 ◽  
Vol 919-921 ◽  
pp. 1416-1420
Author(s):  
Hui Wu Jin

Urban development often requires the construction of deep excavations. There are some difficulties during design and construction of foundation excavation, such as large engineering quantity, poor geological conditions, as well as challenges to design and construction of retaining and protecting structure. To solve these difficulties, supporting system of steel circle beam, steel pipe support and stiffened support compounding with steel pipe pile cofferdam is designed. Soil resistance calculating method is used for support structure design in all possible conditions and the result is compared with that using the classical method. With reasonable supporting process and construction measures, monitoring results including displacement of steel pipe piles and greatest axial force can meet the norm requirements. It is proved that the retaining and protecting system designed is safe and reliable. With the benefit of small deformation and high integrity, locking steel pipe piles gave full play to its locking function of water. The design method in the paper is feasible and may offer some references for similar deep foundation excavation.


2015 ◽  
Vol 744-746 ◽  
pp. 1741-1744
Author(s):  
Qiong Qi ◽  
Yu Wen Ju

Shanxi is one of the typical loessial areas in China, accompanied by plenty of loess geological disasters induced by rainfall. Based on the survey and compartment of geological disasters in the area, the geological conditions of them have been obtained by anglicizing the landslide, the mud-rock flow and dilapidation that have occurred. What’s more, the geological conditions, growing characteristics, and distribution law of these geological disasters induced by rainfall were summarized. On that basis, targeted preventive measures were put forward. These will provide reliable support to loess geological disaster warning work and to confirm the mechanism of hazard forming study.


Sign in / Sign up

Export Citation Format

Share Document