Behaviour of Releases of Carbon Dioxide From Pipelines and Vents

Author(s):  
Dan Allason ◽  
Keith Armstrong ◽  
Julian Barnett ◽  
Phil Cleaver ◽  
Ann Halford

A large Research and Development programme has been executed by National Grid to determine the feasibility of transporting carbon dioxide (CO2) by pipeline. Such pipelines would be required to form a transportation system to take the CO2 from its place of capture at an emitter’s site to a place of safe storage within a Carbon Capture and Storage (CCS) scheme. This programme received financial support from the European Union. As part of this programme, National Grid commissioned a series of experimental studies to investigate the behaviour of releases of CO2 mixtures in the gaseous and the liquid (or dense) phase. This has included simulating accidental releases in the form of punctures or ruptures of a buried pipeline and deliberate releases through different venting arrangements. This work is required, as CO2 has the potential to cause some harm to people if they are exposed to it for long enough at high concentrations. This paper gives an overview of the findings from this work and shows how the data has been used to help develop a number of the more pragmatic, predictive models for outflow and dispersion. This work complements the more theoretical studies carried out using state of the art advanced computational fluid dynamic models, employed by other UK based participants (University College London, University of Leeds, Kingston University and the University of Warwick) in the research programme.

Author(s):  
G. Hachem ◽  
J. Salazar ◽  
U. Dixekar

Carbon capture and storage (CCS) constitutes an extremely important technology that is constantly being improved to minimize the amounts of carbon dioxide (CO2) entering the atmosphere. According to the Global CCS Institute, there are more than 320 worldwide CCS projects at different phases of progress. However, current CCS processes are accompanied with a large energy and efficiency penalty. This paper models and simulates a post-combustion carbon capture system, that uses absorption as a method of separation, in Aspen Plus V7.2. Moreover, the CAPE-OPEN Simulated Annealing (SA) Capability is implemented to minimize the energy consumed by this system, and allow coal-fired power plants to use similar carbon capture systems without losing 20 to 40 % of the plant's output.


2021 ◽  
Author(s):  
Ángel Galán-Martín ◽  
Daniel Vázquez ◽  
Selene Cobo ◽  
Niall Mac Dowell ◽  
José Caballero ◽  
...  

Abstract Carbon dioxide removal (CDR) will be essential to meet the climate targets, so enabling its deployment at the right time will be decisive. Here, we investigate the still poorly understood implications of delaying CDR actions, focusing on integrating direct air capture and bioenergy with carbon capture and storage (DACCS and BECCS) into the European Union power mix. Under an indicative target of − 50 Gt of net CO2 by 2100, delayed CDR would cost an extra of 0.12 − 0.19 trillion EUR per year of inaction. Moreover, postponing CDR beyond mid-century would substantially reduce the removal potential to almost half (− 35.60 Gt CO2) due to the underused biomass and land resources and the maximum technology diffusion speed. The effective design of BECCS and DACCS systems calls for long-term planning starting from now and aligned with the evolving power systems. Our quantitative analysis of the consequences of inaction on CDR —with climate targets at risk and fair CDR contributions at stake —should help to break the current impasse and incentivize early actions worldwide.


Author(s):  
Naimish Agarwal

Abstract: More than ever, the fate of anthropogenic CO2 emissions is in our hands. Since the advent of industrialization, there has been an increase in the use of fossil fuels to fulfil rising energy demands. The usage of such fuels results in the release of carbon dioxide (CO2) and other greenhouse gases, which result in increased temperature. Such warming is extremely harmful to life on Earth. The development of technology to counter the climate change and spreading it for widespread adoptions. We need to establish a framework to provide overarching guidance for the well-functioning of technology and mechanism development of Carbon Capture and Storage. Carbon capture and storage (CCS) is widely regarded as a critical approach for achieving the desired CO2 emission reduction. Various elements of CCS, such as state-of-the-art technology for CO2 collection, separation, transport, storage, politics, opportunities, and innovations, are examined and explored in this paper. Carbon capture and storage is the process of capturing and storing carbon dioxide (CO2) before it is discharged into the environment (CCS). The technology can capture high amounts of CO2 produced by fossil fuel combustion in power plants and industrial processes. CO2 is compressed and transferred by pipeline, ship, or road tanker once it has been captured. CO2 can then be piped underground, usually to depths of 1km or more, and stored in depleted oil and gas reservoirs, coalbeds, or deep saline aquifers, depending on the geology. CO2 could also be used to produce commercially marketable products. With the goal of keeping world average temperatures below 1.5°C (2.7°F) and preventing global average temperature rises of more than 2°C (3.6°F) over pre-industrial levels, CCS model should be our priority to be implemented with the proper economical map


Nukleonika ◽  
2014 ◽  
Vol 59 (1) ◽  
pp. 3-7
Author(s):  
Stanisław Chałupnik ◽  
Małgorzata Wysocka

Abstract Poland, due to the ratification of the Kioto Protocol, is obliged to diminish the emission of greenhouse gases. One of the possible solutions of this problem is CO2 sequestration (CCS - carbon capture and storage). Such an option is a priority in the European Union. On the other hand, CO2 sequestration may be potentially risky in the case of gas leakage from underground reservoirs. The most dangerous event may be a sudden release of the gas onto the surface. Therefore, it is very important to know if there is any escape of CO2 from underground gas reservoirs, created as a result of sequestration. Such information is crucial to ensure safety of the population in areas located above geological reservoirs. It is possible to assess the origin of carbon dioxide, if the measurement of radiocarbon 14C concentration in this gas is done. If CO2 contains no 14C, it means, that the origin of the gas is either geological or the gas has been produced as a result of combustion of fossil fuels, like coal. A lot of efforts are focused on the development of monitoring methods to ensure safety of CO2 sequestration in geological formations. A radiometric method has been tested for such a purpose. The main goal of the investigations was to check the application possibility of such a method. The technique is based on the liquid scintillation counting of samples. The gas sample is at first bubbled through the carbon dioxide adsorbent, afterwards the adsorbent is mixed with a dedicated cocktail and measured in a low-background liquid scintillation spectrometer Quantulus. The described method enables measurements of 14C in mine and soil gas samples.


Author(s):  
Andrew Cosham ◽  
Robert J. Eiber ◽  
Edward B. Clark

Carbon dioxide (CO2) pipelines are more susceptible to long running fractures than hydrocarbon gas pipelines because of the decompression characteristics of CO2. The key to understanding this issue is the phase diagram and the liquid-vapour phase boundary. GASDECOM — based on the BWRS equation of state — is a program widely used for calculating the decompression behaviour of mixtures of hydrocarbons. The calculated decompression wave velocity curve is then used in models such as the Battelle Two Curve Model to determine the toughness required to arrest a propagating ductile fracture. GASDECOM is capable of modelling mixtures of hydrocarbons (methane through to hexane), nitrogen and carbon dioxide. It therefore can (and has) been used to investigate the effect of methane and nitrogen on the decompression characteristics of CO2. Pipelines can be expected to play a significant role in the transportation infrastructure required for the successful implementation of carbon capture and storage (CCS). The composition of the carbon dioxide rich stream to be transported in a pipeline depends on the capture technology, e.g. post-combustion, pre-combustion and oxy-fuel. Post-combustion tends to result in an almost pure stream. The other capture technologies produce a less pure stream, containing potentially significant proportions of other components such as hydrogen, nitrogen, oxygen, argon and methane. One of the factors that will constrain the design and operation of a carbon dioxide pipeline is the effect of these other components on the decompression characteristics, and hence the arrest toughness (amongst other issues). Components such as hydrogen, oxygen and argon cannot currently be considered using GASDECOM. Through a study of the underlying algorithms implemented in GASDECOM, it is shown how GASDECOM can be modified to include these additional components relevant to carbon capture and storage. The effect of impurities such as hydrogen on the decompression characteristics is then illustrated, and related back to their effect on the phase diagram and the liquid-vapour phase boundary. The sensitivity of the results to the use of equations of state other than BWRS is also illustrated. Simplifications that follow from the decompression behaviour of carbon dioxide are also highlighted. Finally, the small and large scale experimental studies that are required to validate predictions of the decompression behaviour and the arrest toughness are discussed.


Author(s):  
Sara Elhoshee ◽  
Fatima Taqi ◽  
Amna Alabdullah ◽  
Mohamed Hassan ◽  
Azza Abouhashem

One of the major problems the world is facing nowadays is Global Warming. The main ten Green House Gases (GHGs) include water vapor (H2O), carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). The most abundant and dominant greenhouse gas is water vapor but concentration of water vapor depends on temperature and other meteorological conditions, and not directly upon human activities. CO2 is the second-most important one and that is why reduction of CO2 emissions is a vital area of research. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. CCS divides into three methods: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. For CO2 capture, various technologies are used which include: absorption, adsorption, cryogenic distillation, and membrane separation. Our research focuses on one of the technologies for post-combustion capture, which is membrane separation. In this research, we fabricated four samples of polymeric membranes with different proportions of the components and then tested them for thermal stability, tensile strength, selectivity and permeability. The membrane can be modified by trying different mixtures of the forming polymers with different percentages. The separated carbon dioxide gas can be used in different applications like fire extinguishers, carbonated beverages or cooling systems. For the future recommendations finding more applications for the use of the separated carbon dioxide gas will benefit the environment and will make this project more successful. The same techniques could be used to fabricate membranes for purifying the methane gas. Further studies must be done to ensure the effectiveness of these membranes when used in the industry.


Author(s):  
Chang Seop Hong ◽  
Jong Hyeak Choe ◽  
Hyojin Kim

Carbon capture and storage (CCS) is aimed at disposing the carbon dioxide (CO2) generated by power plants. As next-generation adsorbents, metal–organic framework (MOF) adsorbents with high surface area, tunable pore...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ángel Galán-Martín ◽  
Daniel Vázquez ◽  
Selene Cobo ◽  
Niall Mac Dowell ◽  
José Antonio Caballero ◽  
...  

AbstractCarbon dioxide removal (CDR) will be essential to meet the climate targets, so enabling its deployment at the right time will be decisive. Here, we investigate the still poorly understood implications of delaying CDR actions, focusing on integrating direct air capture and bioenergy with carbon capture and storage (DACCS and BECCS) into the European Union power mix. Under an indicative target of −50 Gt of net CO2 by 2100, delayed CDR would cost an extra of 0.12−0.19 trillion EUR per year of inaction. Moreover, postponing CDR beyond mid-century would substantially reduce the removal potential to almost half (−35.60 Gt CO2) due to the underused biomass and land resources and the maximum technology diffusion speed. The effective design of BECCS and DACCS systems calls for long-term planning starting from now and aligned with the evolving power systems. Our quantitative analysis of the consequences of inaction on CDR—with climate targets at risk and fair CDR contributions at stake—should help to break the current impasse and incentivize early actions worldwide.


Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1278
Author(s):  
Jaeyong Sim ◽  
Sang-Hyeok Kim ◽  
Jin-Yong Kim ◽  
Ki Bong Lee ◽  
Sung-Chan Nam ◽  
...  

Today, climate change caused by global warming has become a worldwide problem with increasing greenhouse gas (GHG) emissions. Carbon capture and storage technologies have been developed to capture carbon dioxide (CO2); however, CO2 storage and utilization technologies are relatively less developed. In this light, we have reported efficient CO2 decomposition results using a nonperovskite metal oxide, SrFeCo0.5Ox, in a continuous-flow system. In this study, we report enhanced efficiency, reliability under isothermal conditions, and catalytic reproducibility through cyclic tests using SrFeO3−δ. This ferrite needs an activation process, and 3.5 vol% H2/N2 was used in this experiment. Activated oxygen-deficient SrFeO3−δ can decompose CO2 into carbon monoxide (CO) and carbon (C). Although SrFeO3−δ is a well-known material in different fields, no studies have reported its use in CO2 decomposition applications. The efficiency of CO2 decomposition using SrFeO3−δ reached ≥90%, and decomposition (≥80%) lasted for approximately 170 min. We also describe isothermal and cyclic experimental data for realizing commercial applications. We expect that these results will contribute to the mitigation of GHG emissions.


Author(s):  
Kartika Srivastava

Abstract: Carbon dioxide capture and sequestration (CCS) is the capture and storage of carbon dioxide (CO2) that is emitted to the atmosphere as a result of combustion process. Presently majority of efforts focus on the removal of carbon dioxide directly from industrial plants and thereby storing it in geological reservoirs. The principle is to achieve a carbon neutral budget if not carbon negative, and thereby mitigate global climate change. Currently, fossil fuels are the predominant source of the global energy generation and the trend will continue for the rest of the century. Fossil fuels supply over 63% of all primary energy; the rest is contributed by nuclear, hydro-electricity and renewable energy. Although research and investments are being targeted to increase the percentage of renewable energy and foster conservation and efficiency improvements of fossil-fuel usage, development of CCS technology is the most important tool likely to play a pivotal role in addressing this crisis. [1] Keywords: Carbon Capture and Storage, Carbon dioxide, fossil fuels, Greenhouse gases


Sign in / Sign up

Export Citation Format

Share Document