A New Approach Using EBSD to Quantitatively Distinguish Complex Transformation Products Along the HAZ in X80 Linepipe Steel

Author(s):  
Jennifer M. Reichert ◽  
Matthias Militzer ◽  
Warren J. Poole ◽  
Laurie Collins

State-of-the-art linepipe steels are microalloyed low-carbon steels that combine high strength and fracture toughness with good weldability. During welding of pipe sections the heat affected zone (HAZ) experiences rapid thermal cycles resulting in a graded microstructure that can be significantly different from that of the base metal. In particular a variety of bainitic microstructures can form in the HAZ. Depending on the type of bainite mechanical properties may be improved or may lead to poor fracture resistance and be detrimental to the overall HAZ performance. Optical microscopy is not sufficient to differentiate bainitic morphologies which vary with the transformation temperature. The investigated X80 linepipe steel also contains retained austenite at room temperature. Based on the retained austenite it is possible to characterize the orientation relationship (OR) between austenite and the transformation products. It is found that bainite shows an orientation relationship near Kurdjumov-Sachs with the prior austenite. Variant selection is related to the driving force for the bainite reaction and hence depends on the transformation temperature. In the current study Electron BackScatter Diffraction (EBSD) mapping is used to characterize transformation products based on their orientation relationship. This approach offers a quantitative way to determine volume fractions of different types of bainite in complex HAZ microstructures which is necessary to establish structure-property relationships of the HAZ.

2012 ◽  
Vol 706-709 ◽  
pp. 2118-2123
Author(s):  
Manuel Gómez ◽  
Pilar Valles ◽  
Sebastián F. Medina

A series of anisothermal multipass hot torsion tests were carried out to simulate hot rolling on three high-strength low-carbon steels with different amounts of Mn, Mo, Nb and Ti and designed for pipeline construction. Mean Flow Stress was graphically represented against the inverse of temperature to characterize the evolution of austenite microstructure during rolling. The effect of austenite strengthening obtained at the end of thermomechanical processing on the final microstructure obtained after cooling was studied. Higher levels of austenite strengthening before cooling promote a refinement of final microstructure but can also restrict the fraction of low-temperature transformation products such as acicular ferrite. This combined effect gives rise to a wide range of final microstructures and mechanical properties depending on the composition, processing schedule and cooling rates applied. On the other hand, the precipitation state obtained at diverse temperatures during and at the end of hot rolling schedule was evaluated by means of transmission electron microscopy (TEM) in two microalloyed steels. It was found that two families of precipitates with different morphology, composition and mean size can coexist in microalloyed steels.


2005 ◽  
Vol 500-501 ◽  
pp. 663-668 ◽  
Author(s):  
Rocco Varano ◽  
A.M. Elwazri ◽  
Fulvio Siciliano ◽  
D.Q. Bai ◽  
Raynald Gauvin ◽  
...  

Precipitation strengthening is an important parameter controlling the mechanical properties of low carbon steels. These precipitates are very fine and are normally analyzed using either thin foils or carbon extraction replicas under a transmission electron microscopy (TEM). In this work, field emission gun scanning electron microscope (FE-SEM) was applied successfully in the characterization of niobium (Nb) carbo-nitride (C,N) precipitates using carbon extraction replicas. FE-SEM observation of high strength linepipe steel replicas before and after aging at 400°C for 1 hr confirmed the presence of Nb(C,N) precipitates in ferrite. The FE-SEM could analyze small particles (below 50 nm) embedded in the steel but the analysis had to be carried out at low voltages to maximize spatial resolution resulting in a poor signal. However, carbon extraction replicas in the FE-SEM can be analyzed using high voltages, since the interaction volume effect is no longer a problem.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 758 ◽  
Author(s):  
Jean-Yves Maetz ◽  
Matthias Militzer ◽  
Yu Chen ◽  
Jer-Ren Yang ◽  
Nam Goo ◽  
...  

Nb–Mo low-alloyed steels are promising advanced high strength steels (AHSS) because of the highly dislocated bainitic ferrite microstructure conferring an excellent combination of strength and toughness. In this study, the potential of precipitation strengthening during coiling for hot-strip Nb–Mo-bearing low-carbon steels has been investigated using hot-torsion and aging tests to simulate the hot-rolling process including coiling. The obtained microstructures were characterized using electron backscatter diffraction (EBSD), highlighting the effects of Nb and Mo additions on formation and tempering of the bainitic ferrite microstructures. Further, the evolution of nanometer-sized precipitates was quantified with high-resolution transmission electron microscopy (HR-TEM). The resulting age hardening kinetics have been modelled by combining a phenomenological precipitation strengthening model with a tempering model. Analysis of the model suggests a narrower coiling temperature window to maximize the precipitation strengthening potential in bainite/ferrite high strength low-alloyed (HSLA) steels than that for conventional HSLA steels with polygonal ferrite/pearlite microstructures.


2010 ◽  
Vol 638-642 ◽  
pp. 3331-3336 ◽  
Author(s):  
J.M. Choi ◽  
B.J. Park ◽  
K.S. Lee ◽  
K.J. Lee

It is very important to understand interstitial carbon behaviors in cold rolled steel to get the good formability as well as the high strength. In low carbon steel, most of carbons are consumed by the formation of grain boundary cementite during cooling. During heating and holding between Ae1 and Ae3, cementite is dissolved and consequently carbon enriched austenite is formed. By controlled cooling, retained austenite as well as bainite and martensite are formed. In this study, the effect of silicon, intercritical annealing, isothermal bainite transformation on the formation of ferritic bainite, cementite and retained austenite are modeled by nucleation and growth, diffusion and dissolution. In addition, the formation of retained austenite and their carbon contents are modeled and compared with experimental data.


Alloy Digest ◽  
2007 ◽  
Vol 56 (2) ◽  

Abstract MITTAL DI-FORM T700 and HF80Y100T are low-carbon steels with a manganese and silicon composition. Dual-phase (DP) steels are one of the important advanced high-strength steel (AHSS) products developed for the automotive industry. Their microstructure typically consists of a soft ferrite phase with dispersed islands of a hard martensite phase. The martensite phase is substantially stronger than the ferrite phase. The DI-FORM grades exhibit low yield-to-tensile strengths, and the numeric designation in the name corresponds to the tensile strength. This datasheet provides information on microstructure and tensile properties as well as deformation and fatigue. It also includes information on forming. Filing Code: SA-561. Producer or source: Mittal Steel USA Flat Products.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Paulina Lisiecka-Graca ◽  
Krzysztof Bzowski ◽  
Janusz Majta ◽  
Krzysztof Muszka

AbstractThe mechanical behaviours of microalloyed and low-carbon steels under strain reversal were modelled based on the average dislocation density taking into account its allocation between the cell walls and cell interiors. The proposed model reflects the effects of the dislocations displacement, generation of new dislocations and their annihilation during the metal-forming processes. The back stress is assumed as one of the internal variables. The value of the initial dislocation density was calculated using two different computational methods, i.e. the first one based on the dislocation density tensor and the second one based on the strain gradient model. The proposed methods of calculating the dislocation density were subjected to a comparative analysis. For the microstructural analysis, the high-resolution electron backscatter diffraction (EBSD) microscopy was utilized. The calculation results were compared with the results of forward/reverse torsion tests. As a result, good effectiveness of the applied computational methodology was demonstrated. Finally, the analysis of dislocation distributions as an effect of the strain path change was performed.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2302 ◽  
Author(s):  
Yilin Wang ◽  
Huicheng Geng ◽  
Bin Zhu ◽  
Zijian Wang ◽  
Yisheng Zhang

The application of the quenching and partitioning (Q-P) process on advanced high-strength steels improves part ductility significantly with little decrease in strength. Moreover, the mechanical properties of high-strength steels can be further enhanced by the stepping-quenching-partitioning (S-Q-P) process. In this study, a two-stage quenching and partitioning (two-stage Q-P) process originating from the S-Q-P process of an advanced high-strength steel 30CrMnSi2Nb was analyzed by the simulation method, which consisted of two quenching processes and two partitioning processes. The carbon redistribution, interface migration, and phase transition during the two-stage Q-P process were investigated with different temperatures and partitioning times. The final microstructure of the material formed after the two-stage Q-P process was studied, as well as the volume fraction of the retained austenite. The simulation results indicate that a special microstructure can be obtained by appropriate parameters of the two-stage Q-P process. A mixed microstructure, characterized by alternating distribution of low carbon martensite laths, small-sized low-carbon martensite plates, retained austenite and high-carbon martensite plates, can be obtained. In addition, a peak value of the volume fraction of the stable retained austenite after the final quenching is obtained with proper partitioning time.


Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3781
Author(s):  
Zhongping He ◽  
Huachu Liu ◽  
Zhenyu Zhu ◽  
Weisen Zheng ◽  
Yanlin He ◽  
...  

Transformation Induced Plasticity (TRIP) steels with silicon–manganese (Si–Mn) as the main element have attracted a lot of attention and great interest from steel companies due to their low price, high strength, and high plasticity. Retained austenite is of primary importance as the source of high strength and high plasticity in Si–Mn TRIP steels. In this work, the cold rolled sheets of Si–Mn low carbon steel were treated with TRIP and Dual Phase (DP) treatment respectively. Then, the microstructure and composition of the Si–Mn low carbon steel were observed and tested. The static tensile test of TRIP steel and DP steel was carried out by a CMT5305 electronic universal testing machine. The self-built true stress–strain curve model of TRIP steel was verified. The simulation results were in good agreement with the experimental results. In addition, the phase transformation energy of retained austenite and the work borne by austenite in the sample during static stretching were calculated. The work done by austenite was 14.5 J, which was negligible compared with the total work of 217.8 J. The phase transformation energy absorption of retained austenite in the sample was 9.12 J. The role of retained austenite in TRIP steel is the absorption of excess energy at the key place where the fracture will occur, thereby increasing the elongation, so that the ferrite and bainite in the TRIP steel can absorb energy for a longer time and withstand more energy.


Author(s):  
Brandt J. Ruszkiewicz ◽  
Tyler Grimm ◽  
Ihab Ragai ◽  
Laine Mears ◽  
John T. Roth

Increasingly strict fuel efficiency standards have driven the aerospace and automotive industries to improve the fuel economy of their fleets. A key method for feasibly improving the fuel economy is by decreasing the weight, which requires the introduction of materials with high strength to weight ratios into airplane and vehicle designs. Many of these materials are not as formable or machinable as conventional low carbon steels, making production difficult when using traditional forming and machining strategies and capital. Electrical augmentation offers a potential solution to this dilemma through enhancing process capabilities and allowing for continued use of existing equipment. The use of electricity to aid in deformation of metallic materials is termed as electrically assisted manufacturing (EAM). The direct effect of electricity on the deformation of metallic materials is termed as electroplastic effect. This paper presents a summary of the current state-of-the-art in using electric current to augment existing manufacturing processes for processing of higher-strength materials. Advantages of this process include flow stress and forming force reduction, increased formability, decreased elastic recovery, fracture mode transformation from brittle to ductile, decreased overall process energy, and decreased cutting forces in machining. There is currently a lack of agreement as to the underlying mechanisms of the electroplastic effect. Therefore, this paper presents the four main existing theories and the experimental understanding of these theories, along with modeling approaches for understanding and predicting the electroplastic effect.


Sign in / Sign up

Export Citation Format

Share Document