Fabrication of Multilayer Tubular Nanoporous Ceramic Membranes via Gel-Casting Followed by Dip-Coating

Author(s):  
P. Ahmadian Namini ◽  
A. A. Babaluo ◽  
M. Akhfash Ardestani ◽  
E. Jannatduost ◽  
M. Peyravi

Multilayer tubular nanoporous ceramic membranes were successfully prepared via gel-casting followed by dip-coating. Tubular alumina porous support systems were manufactured by gel-casting method with pore size in the range of 100–600 nm. Interlayer and top-layer were fabricated with appropriate thickness, morphology and pore size distribution via dip-coating of submicron and nano alumina slurries respectively. The effects of the several parameters such as: solid content, dipping time, vacuum pressure, heating rate and number of coated layers on the structural properties of the prepared nanoporous ceramic membranes were studied to get an appropriate pore size and defect-free surface and then the optimum condition was presented. The morphology and surface quality of nanoporous ceramic membranes were investigated by optical microscopy (OM) and thickness of fabricated interlayer and top-layer were examined with scanning electron microscopy (SEM). Mercury porosimeter measurements were performed to determine the open porosity, pore size and pore size distribution (PSD) of nanoporous ceramic membranes.

1998 ◽  
Vol 520 ◽  
Author(s):  
C. Goebbert ◽  
M. A. Aegerter ◽  
D. Burgard ◽  
R. Nass ◽  
H. Schmidt

ABSTRACTInorganic membranes prepared by the sol gel method are promising candidates for use as filters in separation processes. Conducting supported membranes and coatings have been produced from redispersable nanoscaled crystalline Sb-doped SnO2 powders with a Sb content up to 5 mole % (with respect to Sn). The crystalline particles are monosized (≅4 nm) and fully redispersable in aqueous solution at pH ≥ 8 with a solid content up to 70 wt. %. By thermal treatment at different temperatures and times, the pore size diameter of the material can be adjusted from 4 to 20 nm with a very narrow pore size distribution (∼ ±1 nm) and a total porosity of 63 %, practically independent of the sintering parameters. Uniaxial pressed substrates present similar characteristics with however larger pore size distribution (±5 nm) and 80 % total porosity. Their resistance decreases with sintering temperature and time down to 4 Ω (800 °C 8 h). Fully dispersed aqueous solutions of the powder (25 wt. %) were used to prepare transparent conducting coatings on glass or ceramics by spin-coating. After thermal treatment (1 hour at 550 °C) single layers 200 nm thick exhibited a typical specific electrical resistance ρ = 2.5·10−2 ωcm with transmission in the visible range measured against air of 90%.


2010 ◽  
Vol 7 (3) ◽  
pp. 1187-1192
Author(s):  
Baghdad Science Journal

A mercury porosimeter has been used to measure the intrusion volume of the three types mercury positive lead acid-battery plates. The intrusion volumes were used to calculate the pore diameter, pore volume, pore area, and pore size distribution. The variation of the pore area in positive lead acid-battery plates as well as of the pore volume has the following sequence. Paste positive > Uncured positive > Cured positive


2010 ◽  
Vol 105-106 ◽  
pp. 23-26
Author(s):  
Juan Wu ◽  
Dao Yuan Yang ◽  
Kai Zhu ◽  
Rui Zhang

Mullite- corundum ceramic was fabricated using bauxite and silica fume as raw materials by gel-casting process. The fluidity of the slurry, as well as strength, apparent porosity, pore size distribution, phase composition and microstructure of sintered specimen were studied. The results showed that: the slurry had low viscosity, good fluidity for casting if pH=9, dispersant 0.33wt% and solid content 60vol%; the strength of material came up to 165MPa even if the apparent porosity was about 30%; the samples were characterized by mullite 70%, corundum 22%, rutile 3%, glass phase only 5%, the size of majority grains was about 2μm, and most crystals with high melting point bonded directly; the average aperture was 264nm, the pore size distribution were divided into 2~30nm, 45~60nm and 1500~4000nm three regions. The distribution probability of nano- aperture was the largest, the volume of micron -aperture was the maximum, but all pores were less than 4μm in diameter, which suggested that the materials had micro porous characteristics. The microcrystalline, crystals combined directly and micro porous structure leaded to high strength of the refractory materials together.


2019 ◽  
Author(s):  
Paul Iacomi ◽  
Philip L. Llewellyn

Material characterisation through adsorption is a widely-used laboratory technique. The isotherms obtained through volumetric or gravimetric experiments impart insight through their features but can also be analysed to determine material characteristics such as specific surface area, pore size distribution, surface energetics, or used for predicting mixture adsorption. The pyGAPS (python General Adsorption Processing Suite) framework was developed to address the need for high-throughput processing of such adsorption data, independent of the origin, while also being capable of presenting individual results in a user-friendly manner. It contains many common characterisation methods such as: BET and Langmuir surface area, t and α plots, pore size distribution calculations (BJH, Dollimore-Heal, Horvath-Kawazoe, DFT/NLDFT kernel fitting), isosteric heat calculations, IAST calculations, isotherm modelling and more, as well as the ability to import and store data from Excel, CSV, JSON and sqlite databases. In this work, a description of the capabilities of pyGAPS is presented. The code is then be used in two case studies: a routine characterisation of a UiO-66(Zr) sample and in the processing of an adsorption dataset of a commercial carbon (Takeda 5A) for applications in gas separation.


Sign in / Sign up

Export Citation Format

Share Document