Initial Investigation Into Helical Milling of Laminated Stacks of Electrical Steel

Author(s):  
Howard Liles ◽  
J. Rhett Mayor

This paper serves to report the findings of an initial study on the holing of laminated stacks of electrical steels. Three different holing methods were considered: plunge milling, helical milling (orbit milling), and drilling. Stack delamination, axial thrust force, and burr formation were measured at various feed rates for each process and utilized as comparison metrics. Results from the initial experimental investigation indicate that drilling produces significant burr and plunge milling, whilst reducing burr formation compared to drilling, led to delamination of the stack. Helical milling minimized thrust forces, avoided delamination and minimized burr formation. An interesting spring back effect was also observed during the cutting of the laminated stacks. It is concluded that helical milling is a viable and effective processing method for making holes in laminated stack of hard electrical steels.

2016 ◽  
Vol 836 ◽  
pp. 20-25
Author(s):  
Sigit Iswahyudi ◽  
Wandi Arnandi

An initial study of manipulated electric motor design to produce one axis thrust force without rotation was conducted. A cylindrical electromagnetic propulsion system has a diameter of 75 mm and a height of 90 mm made of ST 60 steel was tested. The system has a coil as conductor carrying current to produce thrust force and a coil to produce magnetic flux in its inner part. There were three windings of coils producing forces have effective diameter of 32 mm that were varied in their loops distance. The coil producing magnetic flux has 148 windings of 1 mm isolated cable on ferrite core. The thrust forces produced by the specimen were tested by measuring its weight change when one of or both of the coils were opened and/or closed circuit.


Author(s):  
Ashkan Sahraie Jahromi ◽  
Behnam Bahr ◽  
Rupindersingh Bassi ◽  
Arvind S. Kolhar

One of the problems in machining of composites is related with the fibers as reinforcement, due to their abrasiveness, causing fast tool wear and deterioration of machined surface. Among all the damages that can occur in the drilling of a composite plate, delamination is the most serious, as it can cause loss of mechanical strength of laminate plates. The main mechanism responsible for delamination is the axial thrust force exerted by the stationary center of the drill – chisel-edge – whose action is more similar to an extrusion that to a drilling. It can be shown that 40% to 50% of the thrust force is because of the chisel edge. Therefore, in this paper a new set of hollow drill bits is introduced and tested on the composite materials with different properties and drilled hole quality mainly, surface roughness, roundness, hole oversize and delamination investigated. With these hollow drill bits we were able to achieve lower thrust forces. Also drill bit geometry changed to be optimized for the best hole quality.


Alloy Digest ◽  
1990 ◽  
Vol 39 (9) ◽  

Abstract Armco Tran-Cor H-0 Electrical Steel, available in coils 0.009 (0.23 mm) thickness, offers an outstanding degree of grain orientation with resultant far lower core loss than possible with conventional grain-oriented electrical steels. It is used for transformer cores. This datasheet provides information on physical properties, hardness, elasticity, and tensile properties. It also includes information on heat treating and surface treatment. Filing Code: Fe-92. Producer or source: Armco Advanced Materials Corporation.


2018 ◽  
Vol 930 ◽  
pp. 449-453
Author(s):  
R.A.C. Felix ◽  
R.L.O. da Rosa ◽  
Luiz P. Brandão

Alternative methods of quantitative texture analysis are applied to characterize the non-oriented grain electrical steels (NOG) in relation to their magnetic properties. Magnetic anisotropy energy (Ea) and A parameter are two models based on crystallographic texture that generates global parameters that can be used to predict the magnetic properties of NOG steels. In this work, these two models were used to evaluate the magnetic polarization and compared between themselves to realize which one best correlates to this property.


2015 ◽  
Vol 651-653 ◽  
pp. 1211-1216
Author(s):  
Shouichi Tamura ◽  
Takashi Matsumura

Double angle drills have recently been used to improve the surface finish in drilling. The double angle drill consists of lower edges at a large wedge angle and upper edges at a small wedge angle on the lips. The paper discusses the cutting processes of the double angle drill in analysis and experiment. A force model is applied to simulate the cutting force and the chip flow direction. The cutting tests are conducted to verify the force model in drilling of carbon fiber reinforced plastic (CFRP) and aluminum alloy (A7075) with a single and a double angle drills. The double angle drill is effective in control of delamination in drilling of CFRP due to reduction of the thrust force. Meanwhile, in drilling of A7075, the small wedge angle of the upper edges on the double angle drill is not effective in reduction of the thrust forces. The curved edge at the end of the lip, in turn, promotes burr formation in drilling of A7075. The effectiveness of the double angle drill depends on the workpiece material.


Author(s):  
Osama S. Hussien

Abstract The thrust block is one of the most widely recognized methods of resisting thrust forces. This type of infrastructure should be installed in bends, dead ends, tees and wyes. Thrust blocks perform the function of transferring thrust force to the ground safely. Thrust block dimensions are designed based on hydrostatic pressures, bend angles, and soil properties in the surrounding area. Several codes exist for designing thrust blocks, but we focus on Egyptian code for design and implementation of pipelines for drinking water and sewage networks (ECDIPWSN) and the American Water Works Association (AWWA). In this methodology, the steps of thrust block design by the codes are demonstrated and applied individually to one of the published papers. The goal of the study is to find the optimum percentages between the dimensions of the block in the two codes and to compare the quantity of concrete after the block is designed by each code. Based on the research, it was found that the concrete amount of the block designed by (AWWA) is smaller than that designed by (ECDIPWSN). HIGHLIGHT Results of the study discovered the volume of the thrust block created by the AWWA method was smaller than the volume created by the ECDIPWSN method when excavation depth was low but was larger when excavation depth was large.


2021 ◽  
Author(s):  
Daniel Svensson ◽  
Tobias Andersson ◽  
Andreas Andersson Lassila

Abstract This paper presents finite element simulations of indexable drilling of AISI4140 workpieces. The Coupled-Eulerian-Lagrangian framework is employed and the focus is to predict the drilling torque around the hole axis, thrust force, temperature distributions and chip geometries. The cutting process is modelled separately for peripheral and central insert. Then, the total thrust force and torque are predicted by superposing the predicted result for each insert. Experiments and simulations are conducted at a constant rotational velocity of 2400 rpm and feed rates of 0.13, 0.16 and 0.18 mm/rev. While the predicted torques are in excellent agreement, the thrust forces showed discrepancies of 12 - 20% to the experimental measured data. Effects of the friction modelling on the predicted torque and thrust force are outlined and possible reasons for the thrust force discrepancies are discussed in the paper. Additionally, the simulations indicate that the tool and workpiece temperature distributions are virtually unaffected by the feed rate.


2011 ◽  
Vol 702-703 ◽  
pp. 758-761 ◽  
Author(s):  
Tuan Nguyen Minh ◽  
Jurij J. Sidor ◽  
Roumen H. Petrov ◽  
Leo Kestens

The core loss and magnetic induction of electrical steels are dependent on the microstructure and texture of the material, which are produced by the thermo-mechanical processing. After a conventional rolling process, crystal orientations of the α-(//RD) and γ-(//ND) fibers are strongly present in the final texture. These fibers have a drastically negative effect on the magnetic properties of electrical steels. By applying asymmetric rolling, significant shear strains could be introduced across the thickness of the sheet and thus a deformation texture with more magnetically favorable components is expected. In this study, an electrical steel of 1.23 wt.% Si was subjected to asymmetric warm rolling in a rolling mill with different roll diameters. The evolutions of both deformed and annealed textures were investigated. The texture evolution during asymmetric warm rolling was analyzed by crystal plasticity simulations using the ALAMEL model. A good fit between measured and calculated textures was obtained. The annealing texture could be understood in terms of an oriented nucleation model that selects crystal orientations with a lower than average stored energy of plastic deformation.


Robotica ◽  
2018 ◽  
Vol 37 (2) ◽  
pp. 213-232
Author(s):  
Liang Liang ◽  
Bai Chen ◽  
Yong Tang ◽  
Yan Xu ◽  
Yu Liu

SUMMARYMinimally invasive surgery is a developing direction of modern medicine. With the successful development of controllable capsule endoscopies, capsule robots are very popular in the field of gastrointestinal medicine. At present, the study of intestinal robots is aimed at the pipeline environment of a single-phase liquid flow. But there exist food residues (i.e. solid particles) or liquid foods in the actual intestine, so intestinal fluid should be liquid–solid or liquid–liquid two-phase mixed fluid. For inner spiral capsule robots with different internal diameters and outer spiral capsule robots, using computational fluid dynamics (CFD) method, the operational performance indicators (i.e. axial thrust force, circumferential resisting moment and maximum pressure to pipeline wall) of spiral capsule robots are numerically calculated in the liquid–solid or liquid–liquid two-phase mixed fluid. By the orthogonal experimental optimization method, the optimum design of spiral capsule robots is obtained in the liquid–solid mixed fluid. The experimental verification has been also carried out. The results show that in the liquid–solid two-phase fluid, the axial thrust force and circumferential resisting moment of the spiral capsule robots decrease with the increase of the size or concentration of solid particles. In the same liquid–solid or liquid–liquid mixed fluid, the operational performance indicators of outer spiral robots are much higher than those of inner spiral robots, and the operational performance indicators of inner spiral robots with bigger internal diameters are higher than those with smaller internal diameters. Adding solid particles of high concentration in the pipeline containing liquid will reduce the drive performance of spiral capsule robots, but adding another liquid of high viscosity will improve the drive performance of spiral capsule robots.


Sign in / Sign up

Export Citation Format

Share Document