AFM-Based Nanoindentation Process: A Comparative Study

Author(s):  
Rapeepan Promyoo ◽  
Hazim El-Mounayri ◽  
Kody Varahramyan

Atomic force microscopy (AFM) has been widely used for nanomachining and fabrication of micro/nanodevices. This paper describes the development and validation of computational models for AFM-based nanomachining. Molecular Dynamics (MD) technique is used to model and simulate mechanical indentation at the nanoscale for different types of materials, including gold, copper, aluminum, and silicon. The simulation allows for the prediction of indentation forces at the interface between an indenter and a substrate. The effects of tip materials on machined surface are investigated. The material deformation and indentation geometry are extracted based on the final locations of the atoms, which have been displaced by the rigid tool. In addition to the modeling, an AFM was used to conduct actual indentation at the nanoscale, and provide measurements to which the MD simulation predictions can be compared. The MD simulation results show that surface and subsurface deformation found in the case of gold, copper and aluminum have the same pattern. However, aluminum has more surface deformation than other materials. Two different types of indenter tips including diamond and silicon tips were used in the model. More surface and subsurface deformation can be observed for the case of nanoindentation with diamond tip. The indentation forces at various depths of indentation were obtained. It can be concluded that indentation force increases as depth of indentation increases. Due to limitations on computational time, the quantitative values of the indentation force obtained from MD simulation are not comparable to the experimental results. However, the increasing trends of indentation force are the same for both simulation and experimental results.

Author(s):  
Rapeepan Promyoo ◽  
Hazim El-Mounayri ◽  
Kody Varahramyan ◽  
Ashlie Martini

Recently, atomic force microscopy (AFM) has been widely used for nanomachining and fabrication of micro/ nanodevices. This paper describes the development and validation of computational models for AFM-based nanomachining (nanoindentation and nanoscratching). The Molecular Dynamics (MD) technique is used to model and simulate mechanical indentation and scratching at the nanoscale in the case of gold and silicon. The simulation allows for the prediction of indentation forces and the friction force at the interface between an indenter and a substrate. The effects of tip curvature and speed on indentation force and friction coefficient are investigated. The material deformation and indentation geometry are extracted based on the final locations of atoms, which are displaced by the rigid tool. In addition to modeling, an AFM was used to conduct actual indentation at the nanoscale, and provide measurements to validate the predictions from the MD simulation. The AFM provides resolution on nanometer (lateral) and angstrom (vertical) scales. A three-sided pyramid indenter (with a radius of curvature ∼ 50 nm) is raster scanned on top of the surface and in contact with it. It can be observed from the MD simulation results that the indentation force increases as the depth of indentation increases, but decreases as the scratching speed increases. On the other hand, the friction coefficient is found to be independent of scratching speed.


Author(s):  
Rapeepan Promyoo ◽  
Hazim El-Mounayri ◽  
Ashlie Martini

Recent developments in science and engineering have advanced the fabrication techniques for micro/nanodevices. Among them, the atomic force microscope (AFM) has already been used for nanomachining and nanofabrication such as nanolithography, nanowriting and nanopatterning. This paper describes the development and validation of computational models for AFM-based nanomachining (nanoindentation and nanoscratching). The Molecular Dynamics (MD) technique is used to model and simulate mechanical indentation and scratching at the nanoscale for the case of gold. The simulation allows for the prediction of indentation forces and the friction force at the interface between an indenter and a substrate. The effect of scratching speeds on indentation force and friction coefficient is investigated. The material deformation and indentation geometry are extracted based on the final locations of the atoms, which have been displaced by the rigid tool. In addition to the modeling, an AFM was used to conduct actual indentation at the nanoscale, and provide measurements to which the MD simulation predictions can be compared. The AFM provides resolution on the nanometer (lateral) and angstrom (vertical) scales. A three-sided pyramid indenter (with a radius of curvature ∼ 25 nm) is raster scanned on top of the surface and in contact with it. It can be observed from the MD simulation results that the indentation force increases as the depth of indentation increases, but decreases as the scratching speed increases. Moreover, the friction coefficient is found to be independent of scratching speed.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 741
Author(s):  
Yuseok Ban ◽  
Kyungjae Lee

Many researchers have suggested improving the retention of a user in the digital platform using a recommender system. Recent studies show that there are many potential ways to assist users to find interesting items, other than high-precision rating predictions. In this paper, we study how the diverse types of information suggested to a user can influence their behavior. The types have been divided into visual information, evaluative information, categorial information, and narrational information. Based on our experimental results, we analyze how different types of supplementary information affect the performance of a recommender in terms of encouraging users to click more items or spend more time in the digital platform.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4061 ◽  
Author(s):  
Awais Munawar Qureshi ◽  
Zartasha Mustansar

In this paper, we have presented a microwave scattering analysis from multiple human head models. This study incorporates different levels of detail in the human head models and its effect on microwave scattering phenomenon. Two levels of detail are taken into account; (i) Simplified ellipse shaped head model (ii) Anatomically realistic head model, implemented using 2-D geometry. In addition, heterogenic and frequency-dispersive behavior of the brain tissues has also been incorporated in our head models. It is identified during this study that the microwave scattering phenomenon changes significantly once the complexity of head model is increased by incorporating more details using magnetic resonance imaging database. It is also found out that the microwave scattering results match in both types of head model (i.e., geometrically simple and anatomically realistic), once the measurements are made in the structurally simplified regions. However, the results diverge considerably in the complex areas of brain due to the arbitrary shape interface of tissue layers in the anatomically realistic head model.After incorporating various levels of detail, the solution of subject microwave scattering problem and the measurement of transmitted and backscattered signals were obtained using finite element method. Mesh convergence analysis was also performed to achieve error free results with a minimum number of mesh elements and a lesser degree of freedom in the fast computational time. The results were promising and the E-Field values converged for both simple and complex geometrical models. However, the E-Field difference between both types of head model at the same reference point differentiated a lot in terms of magnitude. At complex location, a high difference value of 0.04236 V/m was measured compared to the simple location, where it turned out to be 0.00197 V/m. This study also contributes to provide a comparison analysis between the direct and iterative solvers so as to find out the solution of subject microwave scattering problem in a minimum computational time along with memory resources requirement.It is seen from this study that the microwave imaging may effectively be utilized for the detection, localization and differentiation of different types of brain stroke. The simulation results verified that the microwave imaging can be efficiently exploited to study the significant contrast between electric field values of the normal and abnormal brain tissues for the investigation of brain anomalies. In the end, a specific absorption rate analysis was carried out to compare the ionizing effects of microwave signals to different types of head model using a factor of safety for brain tissues. It is also suggested after careful study of various inversion methods in practice for microwave head imaging, that the contrast source inversion method may be more suitable and computationally efficient for such problems.


2011 ◽  
Vol 11 (02) ◽  
pp. 215-236 ◽  
Author(s):  
MATTEO BROGGI ◽  
ADRIANO CALVI ◽  
GERHART I. SCHUËLLER

Cylindrical shells under axial compression are susceptible to buckling and hence require the development of enhanced underlying mathematical models in order to accurately predict the buckling load. Imperfections of the geometry of the cylinders may cause a drastic decrease of the buckling load and give rise to the need of advanced techniques in order to consider these imperfections in a buckling analysis. A deterministic buckling analysis is based on the use of the so-called knockdown factors, which specifies the reduction of the buckling load of the perfect shell in order to account for the inherent uncertainties in the geometry. In this paper, it is shown that these knockdown factors are overly conservative and that the fields of probability and statistics provide a mathematical vehicle for realistically modeling the imperfections. Furthermore, the influence of different types of imperfection on the buckling load are examined and validated with experimental results.


1979 ◽  
Vol 57 (4) ◽  
pp. 400-403 ◽  
Author(s):  
Anne Le Narvor ◽  
Pierre Saumagne

The ir spectra of mixtures of methyl propionate/water and methyl propionate/Ba2+ in dimethylsulfoxide and in acetonitrile have been recorded in the region of the νCO mode of the ester. Evidence is presented to indicate the presence of different types of complexes; their concentration was determined as a function of the composition of the medium. The spectroscopic results are compared to those from the kinetics of the alkaline hydrolysis in the same conditions. It is demonstrated that the orbital control explains the experimental results better than does the charge density on the carbon of the carbonyl group. [Journal translation]


1950 ◽  
Vol 17 (2) ◽  
pp. 145-153 ◽  
Author(s):  
J. O. Hinze ◽  
H. Milborn

Abstract Liquid, supplied through a stationary tube to the inner part of a rotating cup widening toward a brim, flows viscously in a thin layer toward this brim and is then flung off, all by centrifugal action. The flow within this layer and the disintegration phenomena occurring beyond the brim have been studied, experimentally as well as theoretically. A formula has been derived for the thickness and for the radial velocity of the liquid layer within the cup, which proved to agree reasonably well with experimental results. Three essentially different types of disintegration may take place around and beyond the edge of the cup designated, respectively, by: (a) the state of direct drop formation; (b) the state of ligament formation; and (c) the state of film formation. Which one of these is realized depends upon working conditions. Transition from state (a) into (b), or of state (b) into state (c) is promoted by an increased quantity of supply, an increased angular speed, a decreased diameter of the cup, an increased density, an increased viscosity, and a decreased surface tension of the liquid. The experimental results have been expressed in relationships between relevant dimensionless groups. For the state of ligament formation a semiempirical relationship has been derived between the number of ligaments and dimensionless groups determining the working conditions of the cup. Results of drop-size measurements made for the state of ligament formation as well as for the state of film formation show that atomization by mere rotation of the cup is much more uniform than commonly achieved with pressure atomizers.


2016 ◽  
Author(s):  
Osama Ashfaq

Li (ICCV, 2005) proposed a novel generative/discriminative way to combine features with different types and use them to learn labels in the images. However, the mixture of Gaussian used in Li’s paper suffers greatly from the curse of dimensionality. Here I propose an alternative approach to generate local region descriptor. I treat GMM with diagonal covariance matrix and PCA as separate features, and combine them as the local descriptor. In this way, we could reduce the computational time for mixture model greatly while score greater 90% accuracies for caltech-4 image sets.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Bing Tang ◽  
Linyao Kang ◽  
Li Zhang ◽  
Feiyan Guo ◽  
Haiwu He

Nonnegative matrix factorization (NMF) has been introduced as an efficient way to reduce the complexity of data compression and its capability of extracting highly interpretable parts from data sets, and it has also been applied to various fields, such as recommendations, image analysis, and text clustering. However, as the size of the matrix increases, the processing speed of nonnegative matrix factorization is very slow. To solve this problem, this paper proposes a parallel algorithm based on GPU for NMF in Spark platform, which makes full use of the advantages of in-memory computation mode and GPU acceleration. The new GPU-accelerated NMF on Spark platform is evaluated in a 4-node Spark heterogeneous cluster using Google Compute Engine by configuring each node a NVIDIA K80 CUDA device, and experimental results indicate that it is competitive in terms of computational time against the existing solutions on a variety of matrix orders. Furthermore, a GPU-accelerated NMF-based parallel collaborative filtering (CF) algorithm is also proposed, utilizing the advantages of data dimensionality reduction and feature extraction of NMF, as well as the multicore parallel computing mode of CUDA. Using real MovieLens data sets, experimental results have shown that the parallelization of NMF-based collaborative filtering on Spark platform effectively outperforms traditional user-based and item-based CF with a higher processing speed and higher recommendation accuracy.


2013 ◽  
Vol 281 ◽  
pp. 287-292 ◽  
Author(s):  
Ren Feng Zhao ◽  
Sheng Dun Zhao ◽  
Bin Zhong

This paper illuminates a new type of precision cropping process method with rotary striking action. The new process makes use of a controllable circumferential strike on a metal bar with a V-shaped notch. The working principle of the machine is described. Different types of metal bars have been tested, and both bad results and successful results were stated in the paper. The most ideal control mode has been obtained. The experimental results show that the new cropping process can crop bars with different materials and diameters. In some cases, it can be directly used in the subsequent industrial production.


Sign in / Sign up

Export Citation Format

Share Document