Residual Stresses in Flow Drill Screwdriving of Aluminum Alloy Sheets

Author(s):  
Justin L. Milner ◽  
Thomas Gnäupel-Herold ◽  
Jamie D. Skovron

With an increase in fuel economy standards and the need for reducing emissions set for the automotive sector, has resulted in the increased demand for lightweight vehicles. It is well know that the single heaviest component of a passenger vehicle is the body structure, thus has the greatest potential for significantly reducing the vehicles mass. Therefore, transitioning from steel-based bodies to ones composed of lightweight materials, such as: aluminum, magnesium and advanced high strength steels are of great interest. However, with the introduction of these new materials comes with a new means of joining, where conventional methods do not work. Therefore, this work examines a novel joining technique, flow drill screwdriving which is a thermo-mechanical process for joining aluminum and dissimilar materials. The focus of this work is to examine the residual stress distribution in a joint, because mechanical behavior and joint quality are greatly affected by the residual stress. Neutron diffraction was used for the determination of the residual stress in two samples processed with low and high fastener force. The high penetration depth of neutron radiation allows for the determination of triaxial residual stress states inside the material without destruction of the sample. It was found that the stress field around the joint location is primarily in tension, which is problematic if external forces are applied near the joint. Therefore, additional stress measurements were conducted under applied load through a lap shear test. Two load levels were applied to determine the effects on stress concentrations around the proximity of the joint.

2007 ◽  
Vol 40 (5) ◽  
pp. 891-904 ◽  
Author(s):  
P. J. Withers ◽  
M. Preuss ◽  
A. Steuwer ◽  
J. W. L. Pang

The determination of residual stress by diffraction depends on the correct measurement of the strain-free lattice spacing d_{hkl}^0, or alternatively the enforcement of some assumption about the state of strain or stress within the body. It often represents the largest uncertainty in residual stress measurements since there are many ways in which the strain-free lattice spacing can vary in ways that are unrelated to stress. Since reducing this uncertainty is critical to improving the reliability of stress measurements, this aspect needs to be addressed, but it is often inadequately considered by experimenters. Many different practical strategies for the determining of d_{hkl}^0 ordrefhave been developed, some well known, others less so. These are brought together here and are critically reviewed. In practice, the best method will vary depending on the particular application under consideration. Consequently, situations for which each method are appropriate are identified with reference to practical examples.


Author(s):  
T.B. Ball ◽  
W.M. Hess

It has been demonstrated that cross sections of bundles of hair can be effectively studied using image analysis. These studies can help to elucidate morphological differences of hair from one region of the body to another. The purpose of the present investigation was to use image analysis to determine whether morphological differences could be demonstrated between male and female human Caucasian terminal scalp hair.Hair samples were taken from the back of the head from 18 caucasoid males and 13 caucasoid females (Figs. 1-2). Bundles of 50 hairs were processed for cross-sectional examination and then analyzed using Prism Image Analysis software on a Macintosh llci computer. Twenty morphological parameters of size and shape were evaluated for each hair cross-section. The size parameters evaluated were area, convex area, perimeter, convex perimeter, length, breadth, fiber length, width, equivalent diameter, and inscribed radius. The shape parameters considered were formfactor, roundness, convexity, solidity, compactness, aspect ratio, elongation, curl, and fractal dimension.


2018 ◽  
Vol 30 (3) ◽  
pp. 167-173

Red colored lipstick is the most widely used cosmetic product. Although lipstick gives a lot of social, psychological and therapeutic benefits, it may harm the consumers. Because some lipsticks contain a considerable amount of heavy metal especially lead. Lead is being used in lipstick mainly for the pigments required to obtain needed colors. Lead accumulates in the body over time and lead-containing lipstick applied several times a day, every day, combined with lead in water and other sources, could add up to significant exposure levels. Therefore, this study was aimed to determine lead content in red colored lipsticks from market. This study was laboratorybased, analytical study by using 25 lipstick samples. Red colored lipsticks were bought from Mandalay Market by random sampling procedure and they were completely coded to avoid the bias. Then, lead content in coded samples was determined by Flame AAS according to International Conference on Harmonization (ICH) guideline. Lead contents of 88% of the lipsticks samples were more than specified limit (20 ppm) of Food and Drug Administration, United States. All of them, lead content was highest in counterfeit lipsticks group. Among the tested lipstick samples, lipstick with lowest lead content was LE-RL 01 (15.74 ppm) and the lipstick with highest lead content was CF-RL 01(60.09 ppm). In conclusion, lead contents of red colored lipsticks (22 out of 25) from market samples were higher than allowable limit (20 ppm).


2017 ◽  
Vol 68 (4) ◽  
pp. 666-670 ◽  
Author(s):  
Mirela Mihon ◽  
Catalin Stelian Tuta ◽  
Alina Catrinel Ion ◽  
Dana Niculae ◽  
Vasile Lavric

The aim of this work was the development and validation of a fast analytical method to determine the residual solvents content in radiopharmaceuticals such as: 18F-Fluorodeoxyglucose (18F-FDG), 18F-Fluoroestradiol (18F-FES), 18F-Fluorothymidine (18F-FLT),18F-Fluoromisonidazole (18F-FMISO). Radiopharmaceuticals are radioactive preparations for medical purposes used in nuclear medicine as tracers in diagnostic imaging and treatment of certain diseases. Positron Emission Tomography (PET) is a medical imaging technique that consists in introducing into the body of a small amount of a biologically active chemical compound labelled with a short lived positron-emitting radioisotope (18F, 11C, 68Ga). Residual solvents are critical impurities in radiopharmaceuticals that can affect labelling, stability and physicochemical properties of drugs. Therefore, the determination of these solvents is essential for quality control of radiopharmaceuticals. Validation of the control method for residual solvents by gas chromatography is referred by the European Pharmacopoeia using a special injection technique (head space). The parameters of the method, which comply with International Conference on Harmonization guidelines, are: accuracy, precision, linearity, limit of detection, limit of quantification and robustness. The proposed method (direct gas chromatography injection) proved to be linear, precise, accurate and robust. Good linearity was achieved for all the solvents and correlation coefficients (R2) for each residual solvent were found more than 0.99.


1974 ◽  
Vol 41 (3) ◽  
pp. 647-651 ◽  
Author(s):  
Myron Levitsky ◽  
Bernard W. Shaffer

A method has been formulated for the determination of thermal stresses in materials which harden in the presence of an exothermic chemical reaction. Hardening is described by the transformation of the material from an inviscid liquid-like state into an elastic solid, where intermediate states consist of a mixture of the two, in a ratio which is determined by the degree of chemical reaction. The method is illustrated in terms of an infinite slab cast between two rigid mold surfaces. It is found that the stress component normal to the slab surfaces vanishes in the residual state, so that removal of the slab from the mold leaves the remaining residual stress unchanged. On the other hand, the residual stress component parallel to the slab surfaces does not vanish. Its distribution is described as a function of the parameters of the hardening process.


2021 ◽  
Vol 15 (2) ◽  
pp. 177-186
Author(s):  
Caner-Veli Ince ◽  
Anna Chugreeva ◽  
Christoph Böhm ◽  
Fadi Aldakheel ◽  
Johanna Uhe ◽  
...  

AbstractThe demand for lightweight construction is constantly increasing. One approach to meet this challenge is the development of hybrid components made of dissimilar materials. The use of the hybrid construction method for bulk components has a high potential for weight reduction and increased functionality. However, forming workpieces consisting of dissimilar materials requires specific temperature profiles for achieving sufficient formability. This paper deals with the development of a specific heating and cooling strategy to generate an inhomogeneous temperature distribution in hybrid workpieces. Firstly, the heating process boundaries with regard to temperature parameters required for a successful forming are experimentally defined. Secondly, a design based on the obtained cooling strategy is developed. Next a modelling embedded within an electro-thermal framework provides the basis for a numerical determination of admissible cooling rates to fulfil the temperature constraint. Here, the authors illustrate an algorithmic approach for the optimisation of cooling parameters towards an effective minimum, required for applicable forming processes of tailored forming.


Sign in / Sign up

Export Citation Format

Share Document