The Effect of Polyethylene (Glycol) Diacrylate Post-Fabrication Rest Time on Compressive Properties

Author(s):  
Ozlem Yasar ◽  
Serkan Inceoglu ◽  
Ramesh Prashad

In recent years, tissue engineering has been utilized as an alternative approach for the organ transplantation. The success rate of tissue regeneration is influenced by the type of biomaterials, cell sources, growth factors and scaffold fabrication techniques used. The poly(ethylene glycol) diacrylate (PEGDA) is one of commonly used biomaterials because of its biocompatibility, ease of use, and porous microstructure. The mechanical properties of PEGDA have been studied to some extent by several research groups. However, the stability of the mechanical properties with time has not been investigated. In this research, we studied how the mechanical properties of different concentrations of PEGDA change with the post-fabrication ageing time. Cylindrical PEGDA samples were prepared 20%, 40%, 60%, 80%, and 100% concentrations and cured under the UV light. After the solidification process, weight of each sample was monitored in every 0, 2, 4, 6, and 24 hours post-fabrication ageing time until the mechanical testing. Compressive elastic modulus and strength were calculated and statistically analyzed. Our results indicated that the water content of each PEGDA group constantly decreased by time, however, this loss significantly affected the elastic modulus and strength only after 6 hours in some PEGDA concentration.

Author(s):  
Ozlem Yasar ◽  
Serkan Inceoglu

In the field of tissue engineering, scaffold is the foundation structure that provides the desired mechanical support for the tissue being engineered, surface for cells to attach and spread, and access for nutrient transport crucial for cell viability. The scaffolds are 3D building blocks which are designed and fabricated precisely prior to its implantation to the host tissue. When scaffolds with desired shape and size are fabricated, they can be seeded with cells and appropriate growth factors. After cells show healthy growth within the scaffold, they are implanted into the body with the scaffold to allow full-scale tissue regeneration. In this research, photolithography is adapted as a fabrication method to generate PEGDA-based structures. In this method, ultra-violet (UV) light is reflected on PEGDA and as a result of the interaction between UV light and precursor solution, PEGDA turns into solid form. Despite the potential of PEGDA in scaffold applications, the mechanical properties have not been studied in a great extent. Therefore, in this project, the mechanical characterization of PEGDA was conducted for various polymer concentrations. Specimens with 20%, 40%, 60%, 80% and 100% PEGDA to water ratio were prepared for compression tests. Our preliminary experimental data results show that, mechanical properties of PEGDA can be controlled by changing the PEGDA to water ratio. Stronger and stiffer structures can be obtained with high PEGDA concentrations while softer structures can be fabricated with reduced PEGDA concentrations.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 293
Author(s):  
José M. Acosta-Cuevas ◽  
José González-García ◽  
Mario García-Ramírez ◽  
Víctor H. Pérez-Luna ◽  
Erick Omar Cisneros-López ◽  
...  

Photopolymerized microparticles are made of biocompatible hydrogels like Polyethylene Glycol Diacrylate (PEGDA) by using microfluidic devices are a good option for encapsulation, transport and retention of biological or toxic agents. Due to the different applications of these microparticles, it is important to investigate the formulation and the mechanical properties of the material of which they are made of. Therefore, in the present study, mechanical tests were carried out to determine the swelling, drying, soluble fraction, compression, cross-linking density (Mc) and mesh size (ξ) properties of different hydrogel formulations. Tests provided sufficient data to select the best formulation for the future generation of microparticles using microfluidic devices. The initial gelation times of the hydrogels formulations were estimated for their use in the photopolymerization process inside a microfluidic device. Obtained results showed a close relationship between the amount of PEGDA used in the hydrogel and its mechanical properties as well as its initial gelation time. Consequently, it is of considerable importance to know the mechanical properties of the hydrogels made in this research for their proper manipulation and application. On the other hand, the initial gelation time is crucial in photopolymerizable hydrogels and their use in continuous systems such as microfluidic devices.


2014 ◽  
Vol 941-944 ◽  
pp. 404-410 ◽  
Author(s):  
Young Ho Kim ◽  
Jeong Woo Sohn ◽  
Youngjae Woo ◽  
Joo Hyun Hong ◽  
Juyoung Park

Polyethylene glycol (PEG) hydrogel microstructures with various shapes and sizes on a glass chip were prepared by a simple and rapid ultraviolet (UV) irradiation method using a metal mask. Photocurable PEG solution prepared by mixing 95 wt.% polyethylene glycol diacrylate and 5 wt.% 2-hydroxy-2-methylpropiophenone as a photo-initiator was injected to the gap between bottom and upper glasses in a simply assembled glass chip. After a metal mask with line-and-space or complex patterns was placed on the glass chip, UV light from a spot UV irradiation device was exposed to the glass chip through the metal mask for 7 seconds at UV intensity of 26 mW/cm2. Then the PEG hydrogel micropatterns on the glass chip were obtained after removing unreacted PEG solution by air blowing. To prepare more rigid microstructure, the prepared PEG micropatterned chip was exposed under UV light for 20 seconds. Then the PEG hydrogel micropattern chip was fabricated by a simple and rapid procedure. Micropattern transferring was performed from the PEG hydrogel chip to polydimethyl siloxane (PDMS) replica by a solution casting. The prepared micropatterned PDMS replicas showed similar shape and size of microstructures compared to that of the corresponded PEG hydrogel chip. Thus the PEG hydrogel microstructures on a glass chip could be used as a mold to fabricate micropattern PDMS chips for nanobio-chip applications. Furthermore, the present method provides large scale chip fabrication, more than 4 cm-length and 4 cm-width in a single step, not only PEG hydrogel chips but also PDMS chips.


2021 ◽  
pp. 088532822110448
Author(s):  
Xiang Zhang ◽  
Zhenhao Yan ◽  
Guotao Guan ◽  
Zijing Lu ◽  
Shujie Yan ◽  
...  

Natural cartilage tissue has excellent mechanical properties and has certain cellular components. At this stage, it is a great challenge to produce cartilage scaffolds with excellent mechanical properties, biocompatibility, and biodegradability. Hydrogels are commonly used in tissue engineering because of their excellent biocompatibility; however, the mechanical properties of commonly used hydrogels are difficult to meet the requirements of making cartilage scaffolds. The mechanical properties of high concentration polyethylene glycol diacrylate (PEGDA) hydrogel are similar to those of natural cartilage, but its biocompatibility is poor. Low concentration hydrogel has better biocompatibility, but its mechanical properties are poor. In this study, two different hydrogels were combined to produce cartilage scaffolds with good mechanical properties and strong biocompatibility. First, the PEGDA grid scaffold was printed with light curing 3D printing technology, and then the low concentration GelMA/Alginate hydrogel with chondral cells was filled into the PEGDA grid scaffold. After a series of cell experiments, the filling hydrogel with the best biocompatibility was screened out, and finally the filled hydrogel with cells and excellent biocompatibility was obtained. Cartilage tissue engineering scaffolds with certain mechanical properties were found to have a tendency of cartilage formation in in vitro culture. Compared with the scaffold obtained by using a single hydrogel, this molding method can produce a tissue engineering scaffold with excellent mechanical properties on the premise of ensuring biocompatibility, which has a certain potential application value in the field of cartilage tissue engineering.


2011 ◽  
Vol 1312 ◽  
Author(s):  
Alessandro Chiolerio ◽  
Paolo Allia ◽  
Paola Tiberto ◽  
Lorenza Suber ◽  
Giada Marchegiani ◽  
...  

ABSTRACTAcrylic based films containing thermo-chemically synthesized magnetite nanoparticles (NPs) were prepared by UV-curing. A stable dispersion of Fe3O4 NPs in n-hexane was added to polyethylene glycol diacrylate (PEGDA) oligomer or to hexanediol diacrylate (HDDA) oligomer, producing a blend whose viscosity matches the processing requirements for inkjet printing technology. Morphologic characterization is provided by means of Field Effect SEM on a representative nanocomposite section.By real-time FT-IR analysis it was shown that Fe3O4 NPs are able to initiate radical chain-grown polymerization under UV light, for what concerns the HDDA matrix. Tight cross-linked transparent polymeric films were obtained after 1 minute of UV irradiation.The magnetic properties of the produced films were studied by means of an Alternating-Gradient Force Magnetometer (AGFM) in the temperature range 10 – 300 K and up to 18 kOe. The isothermal magnetization curves of both HDDA and PEGDA -based nanocomposites showed that these hybrid systems must be described as interacting superparamagnets (ISP) characterized by inter-particle magnetic interactions dominating over intra-particle effects.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 160
Author(s):  
Erlin Arda Safitri ◽  
I Putu Mahendra ◽  
Anggi Eka Putra ◽  
M Alvien Ghifari ◽  
Demi Dama Yanti ◽  
...  

Colorimetric indicator gels were developed by incorporating anthocyanin (AC) obtained from red cabbage into poly (ethylene glycol) diacrylate (PEGDA)-based hydrogel containing lignocellulose nanofiber (LCNF). The PEGDA-based hydrogel was prepared by mixing all of the mentioned components at the specific composition, and the hydrogels were cured under UV light (245 nm) for 1 min. The pH-response, UV absorption, swelling ratio, and mechanical properties of PEGDA/LCNF were determined. It was further found that PEGDA and LCNF mount play an important role in adjusting the mechanical properties of PEGDA/LCNF. In general, the presence of LCNF improved the mechanical properties and swelling ratio of PEGDA. The incorporation of red cabbage anthocyanin into the PEGDA/LCNF film showed multicolor response when specific pH buffers were introduced. Based on the multicolor response of PEGDA/LCNF/CA, this gel film indicator can be developed as a food freshness indicator that focuses on the detection of ammonia and amine compound.


MRS Advances ◽  
2017 ◽  
Vol 2 (24) ◽  
pp. 1303-1308
Author(s):  
Joyce Tam ◽  
Ozlem Yasar

ABSTRACTIn today’s technology, organ transplantation is found very challenging as it is not easy to find the right donor organ in a short period of time. In the last several decades, tissue engineering was rapidly developed to be used as an alternative approach to the organ transplantation. Tissue engineering aims to regenerate the tissues and also organs to help patients who waits for the organ transplantation. Recent research showed that in order to regenerate the tissues, cells must be seeded onto the 3D artificial laboratory fabricated matrices called scaffolds. If cells show healthy growth within the scaffolds, they can be implanted to the injured tissue to do the regeneration. One of the biggest limitation that reduces the success rate of tissue regeneration is the fabrication of accurate thick 3D scaffolds. In this research “maskless photolithography” was used to fabricate the scaffolds. Experiment setup consist of digital micro-mirror devices (DMD) (Texas Instruments, DLi4120), optical lens sets, UV light source (DYMAX, BlueWave 200) and PEGDA which is a liquid form photo-curable solution. In this method, scaffolds are fabricated in layer-by-layer fashion to control the interior architecture of the scaffolds. Working principles of the maskless photolithography is, first layer shape is designed with AutoCAD and the designed image is uploaded to the DMD as a bitmap file. DMD consists of hundreds of tiny micro-mirrors. When the UV light is turned on and irradiated the DMD, depending on the micro-mirrors’ angles, UV light is selectively reflected to the low percentage Polyethylene (glycol) Diacrylate (PEGDA) photo-curable solution. When UV light penetrates into the PEGDA, only the illuminated part is solidified and non-illuminated area still remains in the liquid phase. In this research, scaffolds were fabricated in three layers. First layer and the last layer are solid layers and y-shape open structure was sandwiched between these layers. After the first layer is fabricated with DMD, a “y-shape” structure was fabricated with the 3D printer by using the dissolvable filament. Then, it was placed onto the first solid layer and covered with fresh high percentage PEGDA solution. UV light was reflected to the PEGDA solution and solidified to make the second and third layers. After the scaffold was fabricated, it is dipped into the limonene solution to dissolve the y-shape away. Our results show that thick scaffolds can be fabricated in layer-by-layer fashion with “maskless photolithography”. Since the UV light is stable and does not move onto the PEGDA, entire scaffold can be fabricated in one single UV shot which makes the process faster than the current fabrication techniques.


2018 ◽  
Vol 24 (9) ◽  
pp. 1479-1485 ◽  
Author(s):  
Elisa Aznarte Garcia ◽  
Ahmed Jawad Qureshi ◽  
Cagri Ayranci

Purpose This paper aims to present an investigation of material-process interaction of VAT-photopolymerization processes. The aim of the research is to evaluate the effect of different printing factors on the tensile properties, such as elastic modulus, of 3D printed specimens. Design/methodology/approach To perform this study, Design of Experiments is used by the use of Taguchi’s techniques. The relationship between each factor and the elastic modulus, ultimate tensile stress and strain at break is obtained. Furthermore, the total print time is analyzed with respect to the obtained properties. Findings The study indicates that part orientation, exposure time to the UV light and layer thickness are the most important factors affecting the investigated properties. At the same time, it was found that the highest mechanical properties can be obtained with the shortest printing times. A comprehensive list of factors available on the slicing software and other factors, like the orientation of the part or its position, is investigated. Future studies including post curing and chemical characteristics based on the obtained results are necessary. Originality/value As a result of this research, it is outlined that using design for additive manufacturing for vat-photopolymerization, especially on DLP processes, 3D printing methods can be stablished. Furthermore, it outlines the possibility of tailoring mechanical properties of printed parts as a function of print parameters and print time. Considering the limited amount of information available in the open literature, the results presented in this paper are of great interest for researchers in the field of VAT-photopolymerization.


2015 ◽  
Vol 9 (2) ◽  
pp. 2431-2439
Author(s):  
Saad El Madani ◽  
S. ELHAMZI ◽  
J. KATTEN ◽  
A. IBNLFASSI

In order to master and improve the quality and properties of the final products, the major industrial challenge lies in the possibility of controlling the morphology, size of microstructures that reside within the molded pieces, as well as their defects; this is the fundamental reason according to which we are more and more interested in mastering the growth and germination of such alloys, as well as the developing structures, at the time of solidification process. The modeling reveals as a valuable aid in the mastery of the formation of such heterogeneousness: segregation cells that are incompatible with industrial requirements. The whole work focuses upon the modeling of the segregation phenomenon of the four hypoeutectic alloys, Al1%Sn, Al2%Sn, Al3%Sn and Al4%Sn, as well as the tin effect upon certain mechanical properties of aluminum. Usually, the microstructure and mechanical  behavior of such alloys as Al-Sn are directly influenced by some parameters such as composition, cooling velocity and homogenization process.


Sign in / Sign up

Export Citation Format

Share Document