scholarly journals Multicolor PEGDA/LCNF Hydrogel in the Presence of Red Cabbage Anthocyanin Extract

Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 160
Author(s):  
Erlin Arda Safitri ◽  
I Putu Mahendra ◽  
Anggi Eka Putra ◽  
M Alvien Ghifari ◽  
Demi Dama Yanti ◽  
...  

Colorimetric indicator gels were developed by incorporating anthocyanin (AC) obtained from red cabbage into poly (ethylene glycol) diacrylate (PEGDA)-based hydrogel containing lignocellulose nanofiber (LCNF). The PEGDA-based hydrogel was prepared by mixing all of the mentioned components at the specific composition, and the hydrogels were cured under UV light (245 nm) for 1 min. The pH-response, UV absorption, swelling ratio, and mechanical properties of PEGDA/LCNF were determined. It was further found that PEGDA and LCNF mount play an important role in adjusting the mechanical properties of PEGDA/LCNF. In general, the presence of LCNF improved the mechanical properties and swelling ratio of PEGDA. The incorporation of red cabbage anthocyanin into the PEGDA/LCNF film showed multicolor response when specific pH buffers were introduced. Based on the multicolor response of PEGDA/LCNF/CA, this gel film indicator can be developed as a food freshness indicator that focuses on the detection of ammonia and amine compound.

MRS Advances ◽  
2018 ◽  
Vol 3 (30) ◽  
pp. 1697-1702 ◽  
Author(s):  
Kerolos Hanna ◽  
Ozgul Yasar-Inceoglu ◽  
Ozlem Yasar

AbstractTissue Engineering has been studied to develop tissues as an alternative approach to the organ regeneration. Successful artificial tissue growth in regenerative medicine depends on the precise scaffold fabrication as well as the cell-cell and cell-scaffold interaction. Scaffolds are extracellular matrices that guide cells to grow in 3D to regenerate the tissues. Cell-seeded scaffolds must be implanted to the damaged tissues to do the tissue regeneration. Scaffolds’ mechanical properties and porosities are the two main scaffold fabrication parameters as the scaffolds must be able to hold the pressure due to the surrounding tissues after the implantation process. In this research, scaffolds were fabricated by photolithography and Poly(ethylene glycol) Diacrylate (PEGDA) which is a biocompatible and biodegradable material was used as a fabrication material. In order to compare the compressive properties of PEGDA only with the compressive properties of drug delivered PEGDA, firstly, PEGDA only solutions were prepared. Then, PEGDA was mixed with Meloxicam 15 mg, Hydrochlorothiazide 12.5 mg, Cyclobenzaprine 10 mg and Spironolactone-hctz 25-25 mg respectively and they were placed under the UV light for about 15 minutes to solidify the cylindrical shaped hydrogels. 5 samples from each group were fabricated under the same conditions. Laboratory temperature, photoinitiator concentration and UV light intensity was kept constant during the fabrication process. After the fabrication was completed, Instron 3369 universal mechanical testing machine with the 5 mm/min compression rate was used to do the compression tests to compare the drug effects on PEGDA hydrogels. Our results indicate that average ultimate strength of PEGDA only samples was 3.820 MPa. Also, due to the fact that Meloxicam 15 mg and PEGDA mixture did not solidify under the UV light at all, compression test could not be performed for PEGDA- Meloxicam 15 mg mixture. However, Hydrochlorothiazide 12.5 mg, Cyclobenzaprine 10 mg and Spironolactone-hctz 25-25 mg dissolved within the PEGDA completely and our compression results show that average ultimate strengths were 3.372 MPa, 1.602 MPa, 1.999 MPa respectively. This preliminary research showcases that compressive properties of the PEGDA-based photopolymerized scaffolds can be altered with the control of the drug type and drug concentration.


Author(s):  
Ozlem Yasar ◽  
Serkan Inceoglu ◽  
Ramesh Prashad

In recent years, tissue engineering has been utilized as an alternative approach for the organ transplantation. The success rate of tissue regeneration is influenced by the type of biomaterials, cell sources, growth factors and scaffold fabrication techniques used. The poly(ethylene glycol) diacrylate (PEGDA) is one of commonly used biomaterials because of its biocompatibility, ease of use, and porous microstructure. The mechanical properties of PEGDA have been studied to some extent by several research groups. However, the stability of the mechanical properties with time has not been investigated. In this research, we studied how the mechanical properties of different concentrations of PEGDA change with the post-fabrication ageing time. Cylindrical PEGDA samples were prepared 20%, 40%, 60%, 80%, and 100% concentrations and cured under the UV light. After the solidification process, weight of each sample was monitored in every 0, 2, 4, 6, and 24 hours post-fabrication ageing time until the mechanical testing. Compressive elastic modulus and strength were calculated and statistically analyzed. Our results indicated that the water content of each PEGDA group constantly decreased by time, however, this loss significantly affected the elastic modulus and strength only after 6 hours in some PEGDA concentration.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
David Baah ◽  
Tobias Donnell ◽  
Sesha Srinivasan ◽  
Tamara Floyd-Smith

In this study, the synthesis of nonspherical composite particles of poly(ethylene glycol) diacrylate (PEG-DA)/SiO2and PEG-DA/Al2O3with single or multiple vias and the corresponding inorganic particles of SiO2and Al2O3synthesized using the Stop Flow Lithography (SFL) method is reported. Precursor suspensions of PEG-DA, 2-hydroxy-2-methylpropiophenone, and SiO2or Al2O3nanoparticles were prepared. The precursor suspension flows through a microfluidic device mounted on an upright microscope and is polymerized in an automated process. A patterned photomask with transparent geometric features masks UV light to synthesize the particles. Composite particles with vias were synthesized and corresponding inorganic SiO2and Al2O3particles were obtained through polymer burn-off and sintering of the composites. The synthesis of porous inorganic particles of SiO2and Al2O3with vias and overall dimensions in the range of ~35–90 µm was achieved. BET specific surface area measurements for single via inorganic particles were 56–69 m2/g for SiO2particles and 73–81 m2/g for Al2O3particles. Surface areas as high as 114 m2/g were measured for multivia cubic SiO2particles. The findings suggest that, with optimization, the particles should have applications in areas where high surface area is important such as catalysis and sieving.


2020 ◽  
Vol 6 (3) ◽  
pp. 189-192
Author(s):  
Jennifer Huling ◽  
Beate Lyko ◽  
Sabine Illner ◽  
Nicklas Fiedler ◽  
Niels Grabow ◽  
...  

AbstractElectrospinning is a popular method for creating nonwoven fiber materials for a wide variety of applications. In the field of biomaterials, electrospun materials are favoured because of a high surface-to-volume ratio which can be useful for drug loading and release, and because nanoscale fibers mimic native tissue structures, improving cell interactions. However limitations exist with regards to traditional solvent evaporation-based electrospinning techniques. A new area of research into reactive electrospinning is investigating methods of electrospinning that rely on in situ crosslinking rather than solvent evaporation to stabilize fibers. These techniques can potentially reduce the waste of excess solvents and make it easier to electrospin water soluble polymers. In this work, UV photocrosslinked PEGDA is evaluated as a material for reactive electrospinning. To facilitate the electrospinning process poly(ethylene glycol) diacrylate (PEGDA) is combined with polyvinyl alcohol (PVA). PEGDA/PVA solutions can be successfully electrospun under constant UV light exposure to initiate the crosslinking of the PEGDA. Reactive electrospun fibers appear more stable immediately after spinning and after washing with water, indicating successful photo crosslinking.


Author(s):  
Li-Hsin Han ◽  
Gazell Mapili ◽  
Shaochen Chen ◽  
Krishnendu Roy

This article presents a micromanufacturing method for direct projection printing of three-dimensional scaffolds for applications in the field of tissue engineering by using a digital micromirror-array device (DMD) in a layer-by-layer process. Multilayered scaffolds are microfabricated using curable materials through an ultraviolet (UV) photopolymerization process. The prepatterned UV light is projected onto the photocurable polymer solution by creating the “photomask” design with a graphic software. Poly(ethylene glycol) diacrylate is mixed with a small amount of dye (0.3wt%) to enhance the fabrication resolution of the scaffold. The DMD fabrication system is equipped with a purging mechanism to prevent the accumulation of oligomer, which could interfere with the feature resolution of previously polymerized layers. The surfaces of the predesigned multilayered scaffold are covalently conjugated with fibronectin for efficient cellular attachment. Our results show that murine marrow-derived progenitor cells successfully attached to fibronectin-modified scaffolds.


TECHNOLOGY ◽  
2017 ◽  
Vol 05 (02) ◽  
pp. 98-106 ◽  
Author(s):  
Shreya Madhavarapu ◽  
Rohit Rao ◽  
Sarah Libring ◽  
Emma Fleisher ◽  
Yasonia Yankannah ◽  
...  

The anterior cruciate ligament (ACL) is the most commonly injured ligament in the knee, with more than 350,000 ACL injuries reported annually in the US. Current treatments include the use of autografts and allografts, which have a number of disadvantages. Previous attempts to use synthetic materials in ligament replacement have been unsuccessful due to their inability to replicate the long-term mechanical properties of the native ligament. The focus of this study was to develop twist-braid poly(L-lactic acid) (PLLA) scaffolds for ACL regeneration. Poly(ethylene glycol) diacrylate (PEGDA) was incorporated into the twist-braid scaffolds to evaluate its impact on their mechanical behavior. The twist-braid scaffolds were also compared with braided scaffolds. Scaffold mechanical properties were evaluated based on stress-relaxation, tensile and fatigue properties of the braided-only, twist-braid, and the twist-braid scaffolds with PEGDA. All the scaffolds exhibited properties comparable to the native human ACL with the twist-braid scaffolds displaying resistance to fatigue. Scaffolds were seeded with rat patellar tendon fibroblasts. Cell viability and the amount of protein released were studied over a course of 8 weeks. The scaffolds were stained with Picrosirius red after 8 weeks to show the deposition of extracellular matrix by the cells. The results from this study showed that the twist-braid scaffolds have properties most suitable for ligament regeneration.


MRS Advances ◽  
2016 ◽  
Vol 2 (19-20) ◽  
pp. 1071-1075 ◽  
Author(s):  
Ramesh Prashad ◽  
Ozlem Yasar

ABSTRACTIn recent years, tissue engineering has been utilized as an alternative approach to organ transplantation. Success rate of tissue regeneration influenced by the biomaterials, cell sources, growth factors and scaffold fabrication. Design and precise fabrication of scaffolds are required to support cells to expand and migrate to 3D environment. Common scaffold fabrication techniques use heat, adhesives, molds or light. In this research, “inverse-photolithography” which is a light based fabrication technique was used to generate the scaffolds. In order to control the interior architecture of the scaffold “a single vertical strut” and “a y-shape” were fabricated with the 3D printer by using the dissolvable filament. Then, the strut and the y-shape were immersed into the photo-curable solution which is poly(ethylene glycol) diacrylate (PEGDA) and photo-initiator mixture. UV light with the 365nm wavelength was placed up-side down under the solution. Photo-curable mixture was exposed to the UV light for 3 minutes to cure the entire scaffold. Solidified scaffold with the strut and y-shape inside was kept in the limonene solution. Limonene penetrated through the open ended strut and y-shape and it dissolved the 3D printed strut and y-shape away leaving the fabricated PEGDA based scaffolds. This preliminary research showcases, the 3D scaffolds with the controlled interior design, can be fabricated with the “inverse-photolithography” technique.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroki Sugiyama ◽  
Kaneto Tsunemitsu ◽  
Hiroaki Onoe ◽  
Kotaro Obata ◽  
Koji Sugioka ◽  
...  

AbstractThe mechanical strength of hydrogel microstructures is crucial for obtaining the desired flexibility, robustness, and biocompatibility for various applications such as cell scaffolds and soft microrobots. In this study, we demonstrate the fabrication of microstructures composed of cellulose nanofibers (CNFs) and poly(ethylene glycol) diacrylate (PEGDA) hydrogels by multiphoton polymerization. The stress of the fabricated microstructure during tensile testing increased with an increase in the CNF concentration, indicating that the mechanical strength of the microstructure was enhanced by using CNFs as fillers. Moreover, the swelling ratio of the microstructure increased with increasing CNF concentration in the PEGDA hydrogel. Our results show the potential of the technique for the microfabrication of advanced cell scaffolds and soft microrobots with the desired mechanical strength.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1500
Author(s):  
Hsuan Chen ◽  
Shyh-Yuan Lee ◽  
Yuan-Min Lin

In this study, three PCL-based polyurethane acrylates were synthesized and further formulated into twelve resins for digital light processing (DLP) 3D printing. Three PCL diols with different molecular weights were synthesized via ring-opening reaction of ε-caprolactone on diethylene glycol, with the catalyst stannous octoate. Isophorone diisocyanate (IPDI) was reacted with 2-hydroxyethyl acrylate (2-HEA) and the PCL diols form PCL-based polyurethane acrylates. Twelve resins composed of different percentages of PCL-based polyurethane acrylates, poly (ethylene glycol) diacrylate (PEGDA), propylene glycol (PPG) and photo-initiator were further printed from a DLP 3D printer. The viscosities of twelve resins decreased by 10 times and became printable after adding 30% of PEGDA. The degree of conversion for the twelve resins can reach more than 80% after the post-curing process. By changing the amount of PEGDA and PPG, the mechanical properties of the twelve resins could be adjusted. PUA530-PEG-PPG (70:30:0), PUA800-PEG-PPG (70:30:0), and PUA1000-PEG-PPG (70:30:0) were successfully printed into customized tissue scaffolds. Twelve PCL-based polyurethane photo-curable resins with tunable mechanical properties, cytotoxicity, and degradability were successfully prepared. With the DLP 3D printing technique, a complex structure could be achieved. These resins have great potential for customized tissue engineering and other biomedical application.


Sign in / Sign up

Export Citation Format

Share Document