A State-of-the-Art Review on Solid-State Metal Joining

Author(s):  
Wayne Cai ◽  
Glenn Daehn ◽  
Anupam Vivek ◽  
Jingjing Li ◽  
Haris Khan ◽  
...  

This paper aims at providing a state-of-the-art review of an increasingly important class of joining technologies called solid-state (SS) welding, as compared to more conventional fusion welding. Among many other advantages such as low heat input, SS processes are particularly suitable for dissimilar materials joining. In this paper, major SS joining technologies such as the linear and rotary friction welding (RFW), friction stir welding (FSW), ultrasonic welding, impact welding, are reviewed, as well as diffusion and roll bonding (RB). For each technology, the joining process is first depicted, followed by the process characterization, modeling and simulation, monitoring/diagnostics/ nondestructive evaluation (NDE), and ended with concluding remarks. A discussion section is provided after reviewing all the technologies on the common critical factors that affect the SS processes. Finally, the future outlook is presented.

Author(s):  
Wayne Cai ◽  
Glenn Daehn ◽  
Anupam Vivek ◽  
Jingjing Li ◽  
Haris Khan ◽  
...  

This paper aims at providing a state-of-the-art review of an increasingly important class of joining technologies called solid-state welding. Among many other advantages such as low heat input, solid-state processes are particularly suitable for dissimilar materials joining. In this paper, major solid-state joining technologies such as the linear and rotary friction welding, friction stir welding, ultrasonic welding, impact welding, are reviewed, as well as diffusion and roll bonding. For each technology, the joining process is first depicted, followed by the process characterization, modeling and simulation, monitoring/diagnostics/NDE, and ended with concluding remarks. A discussion section is provided after reviewing all the technologies on the common critical factors that affect the solid-state processes such as the joining mechanisms, chemical and materials compatibility, surface properties, and process conditions. Finally, the future outlook is presented.


2019 ◽  
Vol 9 (17) ◽  
pp. 3486 ◽  
Author(s):  
R. Joey Griffiths ◽  
Dylan T. Petersen ◽  
David Garcia ◽  
Hang Z. Yu

The repair of high strength, high performance 7075 aluminum alloy is essential for a broad range of aerospace and defense applications. However, it is challenging to implement it using traditional fusion welding-based approaches, owing to hot cracking and void formation during solidification. Here, the use of an emerging solid-state additive manufacturing technology, additive friction stir deposition, is explored for the repair of volume damages such as through -holes and grooves in 7075 aluminum alloy. Three repair experiments have been conducted: double through-hole filling, single through-hole filling, and long, wide-groove filling. In all experiments, additive friction stir deposition proves to be effective at filling the entire volume. Additionally, sufficient mixing between the deposited material and the side wall of the feature is always observed in the upper portions of the repair. Poor mixing and inadequate repair quality have been observed in deeper portions of the filling in some scenarios. Based on these observations, the advantages and disadvantages of using additive friction stir deposition for repairing volume damages are discussed. High quality and highly flexible repairs are expected with systematic optimization work on process control and repair strategy development in the future.


2017 ◽  
Author(s):  
R. Sandeep ◽  
D. Sudhakara ◽  
G. Prasanthi

Friction stir welding (FSW) is a solid state welding process used for welding similar and dissimilar materials. The process is widely used because it does not have common problems such as solidification and liquefaction cracking associated with the fusion welding techniques. The objective of the present research is to find the best combination of friction stir welding process parameters to join aluminium 5052 and 6061 alloy materials. The combination of process parameters is helpful to improve ultimate tensile strength, yield strength, percentage of elongation and hardness of welded joint. To achieve the research objective taguchi based grey analysis was used. The optimum process parameters were found be at rotational speed is 1400 rpm, transverse speed of 100 mm/min and axial force is at 11 KN.


2016 ◽  
Vol 254 ◽  
pp. 261-266
Author(s):  
Bogdan Radu ◽  
Cosmin Codrean ◽  
Radu Cojocaru ◽  
Cristian Ciucă

Friction Stir Welding (FSW) is an innovative solid state welding process, relatively new in industry, which allow welding of two or more materials which have very different properties, particularly thermal properties as fusion temperature, thermal expansion coefficient, specific heat and thermal conduction and have a predisposition to form intermetallic brittle phases, neither one of the components to be weld reach to the melting point. Being a solid state welding process temperature field is very important for the quality of the welded joint, and a lot of researches focused on this topic. This paper presents some results in modeling and estimation of thermal field developed during FSW of dissimilar joints, using Finite Element Analysis. Numerical modeling of thermal field allows engineers to predict, in advance, the evolution of temperature and to estimate the behavior of the welded materials during the welding process. This will reduce significantly the time and number of experiments that have to be carried out, in the process of establishing a good FSW technology, as well as reducing significantly the cost of the tests.


2003 ◽  
Vol 125 (03) ◽  
pp. D10-D16 ◽  
Author(s):  
Matt Hansen

This article provides details of a low-temperature joining technology called friction stir welding. Friction stir welding (FSW) uses a cylindrical, shouldered tool with a profiled pin that is rotated and slowly plunged into the joint line between two pieces of sheet or plate material. According to an engineer, stir welding eliminated 60 percent of the rivets that the plane would have otherwise required. Eclipse Aviation Corp., Albuquerque, NM, is building a separate plant to house its stir welding operations for commercial production, once its plane receives certification by the US Federal Aviation Administration. FSW is a solid-state process, more like forging and extruding than to fusion welding. Since the process is solid state, the joint is not subject to any shrinkage because of phase changes. The process also introduces minimal heat into the weld, so the heat-affected zone is relatively small in comparison to arc welding.


2020 ◽  
Vol 6 (2) ◽  
pp. 29-35
Author(s):  
Irza Sukamana

Pengelasan merupakan proses penggabungan dua atau lebih logam dasar yang disatukan di permukaan kontaknya dengan atau tanpa zat penambah maupun pengisi.Pengelasan terbagi menjadi dua kategori utama yaitu Liquid-State Weldingdan Solid-State Welding. Friction Stir Weldingmerupakan salah satu contoh pengelasan Solid-State Welding (Non-Fusion Welding).   Aluminium adalah logam yang paling banyak terdapat di kerak bumi, dan unsur ketiga terbanyak setelah oksigen dan silikon. Aluminium adalah suatu unsur kimia yang terletak pada golongan 13 periode 3 dengan lambang Al dengan nomor atom 13. Aluminium terbuat dari 66% bauksit dan 33% tanah liat. Aluminium merupakan salah satu material yang sering digunakan sebagai bahan baku sambungan untuk pengelasan Friction Stir Welding.   Friction Stir Welding (FSW) atau Las Gesek Puntir adalah proses pengelasan gesek yang memuntir tool dengan memanfaatkan energi panas dan penekanan tanpa zat penambah maupun pengisi hingga terjadi perubahan fasa pada logam dasar. Parameter proses pengelasan yang dilakukan pada penelitian ini adalah laju translasi tool yaitu, 16 mm/menit dan 22 mm/menit dengan putaran tool 2000 rpm menggunakan jenis indentor changing spiral form. Adapun pengujian yang dilakukan yaitu, pengujian tarik, pengujian kekerasan dan pengujian komposisi kimia.   Hasil dari penelitian ini adalah ditemukan bahwa laju translasi tool, perlakuan panas dan kecepatan pengelasan sangat mempengaruhi sifat – sifat mekanik aluminium seri 1xxx dan seri 5xxx yang telas dilas. Laju translasi 22 mm/menit akan meningkatkan nilai kekerasan dan kekuatan tarik yang lebih baik dibandingkan dengan laju translasi 16 mm/menit, namun tidak terlalu berdampak signifikan terhadap unsur-unsur kimiai di dalamnya.


2014 ◽  
Vol 611-612 ◽  
pp. 671-676 ◽  
Author(s):  
Telmo G. Santos ◽  
Gonçalo Sorger ◽  
Pedro Vilaça ◽  
R.M. Miranda

Recent studies showed that electrical conductivity is a valuable technique to identify the different zones of solid-state welded joints with a good correlation with the microstructure and hardness. This is a relevant result since this technique is expedite and, in some cases, non destructive. The concept was applied to other welding processes as the ones involving fusion and to a wide range of materials. For this, a comprehensive study was performed using friction stir welding, tungsten inert gas (TIG) and gas metal arc (MAG) welding processes in either bead on plate or butt joints in: carbon steel, magnesium and titanium. Eddy current non-destructive testing (NDT) was used to measure the electrical conductivity at different depths in transverse sections of the processed materials. The obtained profiles were compared to the hardness profiles in the same sections. As a result, a good correlation was observed in most materials welded by solid state and by fusion processes. The variation of the electrical conductivity closely follows the one detected in the hardness. Another interesting conclusion is that, even for fusion welding of carbon steels, the technique has potential to complement the hardness measurements and microstructural observations, allowing to identify the distinct zones of welds in materials commonly used in industry.


2019 ◽  
Vol 69 (1) ◽  
pp. 131-142 ◽  
Author(s):  
M. M. Vishwanath ◽  
N. Lakshamanaswamy ◽  
G. K. Ramesh

AbstractFiction Stir welding (FSW) a unique type of metal joining process in solid state, where the heat generation takes place due to the friction action between the rotating tool and the work piece. It is generally used to join all series of Aluminum alloys with good strength and other metallic alloys finds difficult to weld through regular fusion welding techniques. The metal joining takes place in the solid state as the metal to be welded reaches about 80% to 90% of its melting temperature. The joining of metals in friction stir welding does not require any filler metals all classes of Aluminium alloys can be joined and in some desirable cases dissimilar metal compositions and Aluminiun metals composites can be joined satisfactorily. Joining of dissimilar metals has become a trend in the industries like aerospace, automotive chemical etc. as the helps in reducing the cost incurred by eliminating the costly materials. In the present study an experimental investigations are made to study the heat transfer behavior by determining the temperature distribution in AA5052-AA6061 plates during the Friction Stir welding. A three dimensional transient analysis is made by using ANSYS finite element analysis software. Thermocouples are placed at the suitable locations and the same point the temperature readings were taken from the simulation results. The experimental data is compared with the numerically simulated results. The numerical simulations results obtained are in better agreement with the experimental data obtained.


2014 ◽  
Vol 966-967 ◽  
pp. 29-47 ◽  
Author(s):  
Kenichiro Mori

As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating opportunities to design new products through joining dissimilar materials. This paper aims to provide an overview of the state of the art in such joining processes, including cold welding, friction stir welding, joining by forming, self-pierce riveting and mechanical clinching. The paper includes description of the mechanism of joint formation, joint strength and applicability.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 390
Author(s):  
Cyril Vimalraj ◽  
Paul Kah

To reduce environmental impacts and ensure competitiveness, the fabrication and construction sectors focus on minimizing energy and material usage, which leads to design requirements for complex structures by joining of similar and dissimilar materials. Meeting these industrial demands requires compatible materials with improved properties such as good weight-to-strength ratios, where aluminum (Al) and its alloys are competing candidates for various complex applications. However, joining Al with fusion welding processes leads to joint deterioration. Friction stir welding (FSW) produces joints at temperatures below the melting temperature, thus avoiding flaws associated with high heat input, yet requires improvement in the resultant joint properties. Recent studies have shown that nanoparticle reinforcement in FSW joints can improve weld properties. The main focus of this study is to critically review similar and dissimilar friction stir welding of AA5083 and AA6082 with carbide and oxide nanoparticle reinforcement. The study also discusses the effect of welding parameters on reinforcement particles and the effect of nanoparticle reinforcement on weld microstructure and properties, as well as development trends using nanoparticles in FSW. Analysis shows that friction stir welding parameters have a significant influence on the dispersion of the reinforcement nanoparticles, which contributes to determining the joint properties. Moreover, the distributed nanoparticles aid in grain refinement and improve joint properties. The type, amount and size of reinforcement nanoparticles together with the welding parameters significantly influence the joint properties and microstructures in similar and dissimilar Al welds. However, research is still required to determine the strengthening mechanism used by nanoparticles and to assess other nanoparticle additions in FSW of Al alloys.


Sign in / Sign up

Export Citation Format

Share Document