An Approach for Structural-Acoustic Optimization of Ribbed Panels Using Component Mode Synthesis

Author(s):  
Micah R. Shepherd ◽  
Stephen A. Hambric

Component mode synthesis (CMS) is an approach used to couple dynamics of complex structures using modes of individual components. A CMS approach is developed to determine the response of a ribbed panel based on the individual rib and plate modes. The CMS method allows for rapid evaluation of noise-control designs as component modes need to be solved only once. Since efficient evaluation is required for global design optimization procedures, the CMS approach can be well suited in optimization problems. A simple structural-acoustic optimization problem was created to demonstrate the utility of the formulation by finding the optimal rib location and material to reduce sound radiation for a point-driven plate. Several parameters of the optimization algorithm are varied to test convergence speed and accuracy.

Author(s):  
Denis V. Coury ◽  
Mário Oleskovicz ◽  
Silvio A. Souza

The main purpose of this paper is to implement a new methodology based on Genetic Algorithms (GAs) to extract the fundamental voltage and current phasors from noisy waves in power systems to be applied to a faster distance protection. GAs solve optimization problems based on natural selection principles. This application was then formulated as an optimization problem, and the aim was to minimize the estimation error. A 440 kV, 150 km transmission line was simulated using the ATP (Alternative Transients Program) software in order to show the efficiency of the new method. The results from this application show that the global performance of GAs was highly satisfactory concerning speed and accuracy of response, if compared to the traditional Discrete Fourier Transform (DFT).


2010 ◽  
Vol 439-440 ◽  
pp. 1493-1498 ◽  
Author(s):  
Guo Ping Hou ◽  
Xuan Ma

Differential evolution (DE) is an evolutionary algorithm that is based on the individual differential reconstruction idea. It is proposed by Stom and Price in 1997, and is very suitable to solve optimization problem over continuous spaces. First of all, with the introduction of concepts of differential operator (DO), etc., the concise description of DE is given and the analysis of its main features is advanced. For solving discrete optimization problem using DE, a new operator, mapping operator, in the new algorithm was used to ensure the original mutation operator still effective. Then a new S operator, with sigmoid function, was used to keep the result of the mutation operator falls in the interval [0, 1]. The algorithm not only has the advantages of DE, but also is very suitable to solve discrete optimization problems. Calculations of 0/1 knapsack problem show that algorithm has better convergence capability and stability.


1987 ◽  
Vol 109 (1) ◽  
pp. 65-69 ◽  
Author(s):  
K. W. Matta

A technique for the selection of dynamic degrees of freedom (DDOF) of large, complex structures for dynamic analysis is described and the formulation of Ritz basis vectors for static condensation and component mode synthesis is presented. Generally, the selection of DDOF is left to the judgment of engineers. For large, complex structures, however, a danger of poor or improper selection of DDOF exists. An improper selection may result in singularity of the eigenvalue problem, or in missing some of the lower frequencies. This technique can be used to select the DDOF to reduce the size of large eigenproblems and to select the DDOF to eliminate the singularities of the assembled eigenproblem of component mode synthesis. The execution of this technique is discussed in this paper. Examples are given for using this technique in conjunction with a general purpose finite element computer program GENSAM[1].


2009 ◽  
Vol 26 (04) ◽  
pp. 479-502 ◽  
Author(s):  
BIN LIU ◽  
TEQI DUAN ◽  
YONGMING LI

In this paper, a novel genetic algorithm — dynamic ring-like agent genetic algorithm (RAGA) is proposed for solving global numerical optimization problem. The RAGA combines the ring-like agent structure and dynamic neighboring genetic operators together to get better optimization capability. An agent in ring-like agent structure represents a candidate solution to the optimization problem. Any agent interacts with neighboring agents to evolve. With dynamic neighboring genetic operators, they compete and cooperate with their neighbors, and they can also use knowledge to increase energies. Global numerical optimization problems are the most important ones to verify the performance of evolutionary algorithm, especially of genetic algorithm and are mostly of interest to the corresponding researchers. In the corresponding experiments, several complex benchmark functions were used for optimization, several popular GAs were used for comparison. In order to better compare two agents GAs (MAGA: multi-agent genetic algorithm and RAGA), the several dimensional experiments (from low dimension to high dimension) were done. These experimental results show that RAGA not only is suitable for optimization problems, but also has more precise and more stable optimization results.


Author(s):  
S Yoo ◽  
C-G Park ◽  
S-H You ◽  
B Lim

This article presents a new methodology to generate optimal trajectories in controlling an automated excavator. By parameterizing all the actuator displacements with B-splines of the same order and with the same number of control points, the coupled actuator limits, associated with the maximum pump flowrate, are described as the finite-dimensional set of linear constraints to the motion optimization problem. Several weighting functions are introduced on the generalized actuator torque so that the solution to each optimization problems contains the physical meaning. Numerical results showing that the generated motions of the excavator are fairly smooth and effectively save energy, which can prevent mechanical wearing and possibly save fuel consumption, are presented. A typical operator's manoeuvre from experiments is referred to bring out the standing features of the optimized motion.


1998 ◽  
Vol 120 (2) ◽  
pp. 509-516 ◽  
Author(s):  
J. A. Morgan ◽  
C. Pierre ◽  
G. M. Hulbert

This paper demonstrates how to calculate Craig-Bampton component mode synthesis matrices from measured frequency response functions. The procedure is based on a modified residual flexibility method, from which the Craig-Bampton CMS matrices are recovered, as presented in the companion paper, Part I (Morgan et al., 1998). A system of two coupled beams is analyzed using the experimentally-based method. The individual beams’ CMS matrices are calculated from measured frequency response functions. Then, the two beams are analytically coupled together using the test-derived matrices. Good agreement is obtained between the coupled system and the measured results.


2021 ◽  
Vol 12 (4) ◽  
pp. 81-100
Author(s):  
Yao Peng ◽  
Zepeng Shen ◽  
Shiqi Wang

Multimodal optimization problem exists in multiple global and many local optimal solutions. The difficulty of solving these problems is finding as many local optimal peaks as possible on the premise of ensuring global optimal precision. This article presents adaptive grouping brainstorm optimization (AGBSO) for solving these problems. In this article, adaptive grouping strategy is proposed for achieving adaptive grouping without providing any prior knowledge by users. For enhancing the diversity and accuracy of the optimal algorithm, elite reservation strategy is proposed to put central particles into an elite pool, and peak detection strategy is proposed to delete particles far from optimal peaks in the elite pool. Finally, this article uses testing functions with different dimensions to compare the convergence, accuracy, and diversity of AGBSO with BSO. Experiments verify that AGBSO has great localization ability for local optimal solutions while ensuring the accuracy of the global optimal solutions.


2021 ◽  
Vol 12 (4) ◽  
pp. 98-116
Author(s):  
Noureddine Boukhari ◽  
Fatima Debbat ◽  
Nicolas Monmarché ◽  
Mohamed Slimane

Evolution strategies (ES) are a family of strong stochastic methods for global optimization and have proved their capability in avoiding local optima more than other optimization methods. Many researchers have investigated different versions of the original evolution strategy with good results in a variety of optimization problems. However, the convergence rate of the algorithm to the global optimum stays asymptotic. In order to accelerate the convergence rate, a hybrid approach is proposed using the nonlinear simplex method (Nelder-Mead) and an adaptive scheme to control the local search application, and the authors demonstrate that such combination yields significantly better convergence. The new proposed method has been tested on 15 complex benchmark functions and applied to the bi-objective portfolio optimization problem and compared with other state-of-the-art techniques. Experimental results show that the performance is improved by this hybridization in terms of solution eminence and strong convergence.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Feng Zou ◽  
Debao Chen ◽  
Jiangtao Wang

An improved teaching-learning-based optimization with combining of the social character of PSO (TLBO-PSO), which is considering the teacher’s behavior influence on the students and the mean grade of the class, is proposed in the paper to find the global solutions of function optimization problems. In this method, the teacher phase of TLBO is modified; the new position of the individual is determined by the old position, the mean position, and the best position of current generation. The method overcomes disadvantage that the evolution of the original TLBO might stop when the mean position of students equals the position of the teacher. To decrease the computation cost of the algorithm, the process of removing the duplicate individual in original TLBO is not adopted in the improved algorithm. Moreover, the probability of local convergence of the improved method is decreased by the mutation operator. The effectiveness of the proposed method is tested on some benchmark functions, and the results are competitive with respect to some other methods.


Author(s):  
Matthew P. Castanier ◽  
Yung-Chang Tan ◽  
Christophe Pierre

Abstract In this paper, a technique is presented for improving the efficiency of the Craig-Bampton method of Component Mode Synthesis (CMS). An eigenanalysis is performed on the partitions of the CMS mass and stiffness matrices that correspond to the so-called constraint modes. The resultant eigenvectors are referred to as “characteristic constraint modes,” since they represent the characteristic motion of the interface between the component structures. By truncating the characteristic constraint modes, a CMS model with a highly-reduced number of degrees of freedom may be obtained. An example of a cantilever plate is considered. It is shown that relatively few characteristic constraint modes are needed to yield accurate approximations of the lower natural frequencies. This method also provides physical insight into the mechanisms of vibration transmission in complex structures.


Sign in / Sign up

Export Citation Format

Share Document