A Study of Slowly Varying Drift Forces on Multi-Body Floating System

Author(s):  
Yoshiyuki Inoue ◽  
Mir Tareque Ali

The mean and slowly varying drift forces play a vital role in the study of the behavior of moored offshore structures, because their mean periods are close to the natural period of oscillation of the system that causes large motion amplification. The present study is based on far-field method where the velocity potential is calculated by 3D sink-source technique. The numerical calculations have been carried out for a parallel arrangement of FPSO and an LNG carrier. The numerical accuracy in the determination of the wave exciting forces and the hydrodynamic reacting forces influences the motion response that eventually affects the drift forces and moments of each body. The computations of motion responses and drift forces are carried out for a number of different wave heading angles and for different separation distances between the FPSO and LNG carrier. The numerical results are compared with the experimental ones to justify the validity of the improved numerical accuracy of the present computations. It has been observed that due to the lack of accuracy in the numerical scheme adopted for the computer code, the computed results of drift forces and moments sometimes shows completely opposite trend than that of the experimental ones.

Author(s):  
Yoshiyuki Inoue ◽  
Mir Tareque Ali

This paper investigates the hydrodynamic interactions between large numbers of multiple bodies floating in each other’s close vicinity. The physical aspect of hydrodynamic interaction is rather complicated and numerically sound scheme is highly recommended to study this complex phenomenon. In the present study, the 3D sink-source method has been adopted to determine the hydrodynamic forces by taking into account the effect of hydrodynamic interactions among the different floating bodies, and the coupled equations of motions are solved directly. The validation of the computer code developed for this purpose has been justified by comparing the present results with that of the published ones for simple geometrical shaped floating bodies. The numerical computations have been carried out for different numbers of various freely floating multi-body systems and the hydrodynamic interactions between the floating bodies have been studied by calculating the hydrodynamic forces, first order wave exciting forces and motion responses. Finally some conclusions have been drawn on the basis of the present analysis.


Author(s):  
Yu Zhang ◽  
Dapeng Yu ◽  
Shixiao Fu ◽  
Fei Guo ◽  
Wei Wei

In recent years, with the development of new ships and further utilization of marine resources, multi-body floating systems are widely used in practice. Compared with the single floating body, the movement in multi-body floating system is not only affected by the external environment, but the interaction between the bodies cannot be neglected. So analysis of hydrodynamic performance of a multi-body floating system is of great importance. In this paper, a multi-body system consisting of two side-by-side ships is studied. The code AQWA® is used for its hydrodynamic performance analysis in frequency domain. Its hydrodynamic parameters are compared with those of the related single-ship system and the difference is obvious. The two-ship system shows a peak in motion different from single-ship system at some frequencies and its wave exciting forces have period effects. Also, negative values appear in added masses, which never occur for a single-body floating system. When the gap between the two ships is changed, there is a significant trend that the wave frequency of the peak value decreases with the gap size between the two ships. In addition, this paper also discussed the length of wave and distance of ships ratio that the motion resonance usually happens. Through the analysis of this dimensionless parameter, a conclusion about resonance between two parallel ships is deducted.


Author(s):  
Xin Xu ◽  
Jianmin Yang ◽  
Xin Li ◽  
Haining Lu

Floatover is a new method for installing integrated topside of a spar platform. It has several obvious advantages such as less time and cost compared with derrick lifting. In general, the floatover installation consists of three procedures: firstly a single barge is used for long-distance transportation of the topside in order to get good stability; secondly two barges take place of the single barge for floatover installation near the operating site; finally the topside is transferred from the two barges to the spar hull and the installation is completed. Between the first and second procedures, the case occurs that the single transportation barge is sided left and right by two floatover barges in the second procedure with close proximity. This case is concerned by many designers and operators for the security problem brought by possible large relative motions and forces of the three barges in side by side configuration. The hydrodynamics of side-by-side barges are much more complex than that of a single barge in waves. In numerical simulation, it is a challenge to consider all effects including the hydrodynamic interactions, the shielding effects, the viscous effects and the wave resonance effect which has been observed in the gaps between the barges and has a significant impact on wave drift forces. In this paper, motion responses and wave drift forces were calculated in frequency domain for both the multi-body system and the single body. Far-field, middle-field and near-field method were all carried out to calculate wave drift forces. Numerical analysis was executed using potential flow code WAMIT. Corresponding model tests were also performed in the Deepwater Offshore Basin in Shanghai Jiao Tong University. Comparison between numerical and experimental results shows that numerical results agree well with the experiment and that middle-field method has better convergence than near-field method. The comparison between the multi-body system and single body shows that the hydrodynamic interactions (including wave shielding effect and Helmholtz resonance of water in the gaps) are remarkable and motion responses in the multi-body system are larger than single barge at some frequencies.


Author(s):  
Yoshiyuki Inoue ◽  
Md. Kamruzzaman

The LNG-FPSO concept is receiving much attention in recent years, due to its active usage to exploit oil and gas resources. The FPSO offloads LNG to an LNG carrier that is located close to the FPSO, and during this transfer process two large vessels are in close proximity to each other for daylong periods of time. Due to the presence of neighboring vessel, the motion response of both the vessels will be affected significantly. Hydrodynamic interactions related to wave effects may result in unfavorable responses or the risk of collisions in a multi-body floating system. Not only the motion behavior but also the second order drift forces are influenced by the neighboring structures due to interactions of the waves among the structures. A study is made on the time domain analysis to assess the behavior and the operational capability of the FPSO system moored in the sea having an LNG carrier alongside under environmental conditions such as waves, wind and currents. This paper presents an analysis tool to predict the dynamic motion response and non-linear connecting and mooring forces on a parallel-connected LNG-FPSO system due to non-linear exciting forces of wave, wind and current. Simulation for the mooring performance is also investigated. The three-dimensional source-sink technique has been applied to obtain the radiation forces and the transfer function of wave exciting forces on floating multi-bodies. The hydrodynamic interaction effect between the FPSO and the LNG carrier is included to calculate the hydrodynamic forces. For the simulation of a random sea and also for the generation of time depended wind velocity, a fully probabilistic simulation technique has been applied. Wind and current loads are estimated according to OCIMF. The effects of variations in wave, wind and current loads and direction on the slowly varying oscillations of the LNG and FPSO are also investigated in this paper. Finally, some conclusions are drawn based on the numerical results obtained from the present time domain simulations.


Author(s):  
Vasily Bulatov ◽  
Wei Cai

The phase field method (PFM) can be used as an approach to dislocation dynamics simulations alternative to the line DD method discussed in Chapter 10. The degrees of freedom in PFM are continuous smooth fields occupying the entire simulation volume, and dislocations are identified with locations where the field values change rapidly. As we will see later, as an approach to dislocation dynamics simulations PFM holds several advantages. First, it is easier to implement into a computer code than a line DD model. In particular, the complex procedures for making topological changes (Section 10.4) are no longer necessary. Second, the implementation of PFM can take advantage of well-developed and efficient numerical methods for solving partial differential equations (PDEs). Another important merit of PFM is its applicability in a wide range of seemingly different situations. For example, it is possible to simulate the interaction and co-evolution of several types of material microstructures, such as dislocations and alloying impurities, within a unified model. PFM has become popular among physicists and materials scientists over the last 20 years, but as a numerical method it is not new. After all, it is all about solving PDEs on a grid. Numerical integration of PDEs is a vast and mature area of computational mathematics. A number of efficient methods have already been developed, such as the finite difference method [121], the finite element method [122], and spectral methods [123], all of which have been used in PFM simulations. The relatively new aspects of PFM are associated with the method’s formulation and applications, which are partly driven by the growing interest in understanding material microstructures. In Section 11.1, we begin with the general aspects of PFM demonstrated by two simple applications of the method not related to dislocations. Section 11.2 describes the elements required to adapt PFM to dislocation simulations. There we will briefly venture into the field of micromechanics and consider the concept of eigenstrain. The elastic energy of an arbitrary eigenstrain field is derived in Section 11.3. Section 11.4 discusses an example in which the PFM equations for dislocations are solved using the fast Fourier transform method.


Author(s):  
Rafael A. Watai ◽  
Felipe Ruggeri ◽  
Alexandre N. Simos

This paper presents a time domain boundary elements method that accounts for relative displacements between two bodies subjected to incoming waves. The numerical method solves the boundary value problem together with a re-meshing scheme that defines new free surface panel meshes as the bodies displace from their original positions and a higher order interpolation algorithm used to determine the wave elevation and the velocity potential distribution on new free surface collocation points. Numerical solutions of exciting forces and wave elevations are compared to data obtained in a fundamental experimental text carried out with two identical circular section cylinders, in which one was attached to a load cell and the other was forced to move horizontally with a large amplitude oscillatory motion under different velocities. The comparison of numerical and experimental result presents a good agreement.


Author(s):  
P. Temarel

The Loads Committee of the International Ship and Offshore Structures Congress (ISSC) critically reviews the state of the art of environmental and operational loads. Amongst these, elements more relevant to the offshore industry will be presented in this paper. These comprise wave-induced loads, including linear and nonlinear methods, multi-body interactions, slamming, green water, sloshing and rogue waves, cables and risers, vortex-induced vibrations, ice loads, fatigue loading and, verification and validation.


Author(s):  
Zhongwei Li ◽  
Mayuresh Patil ◽  
Xiaochuan Yu

This article presents a semi-analytical method to calculate the ultimate strength of inelastic beam-columns with I-shaped cross section using geometrically exact beam theory. A computer code based on this method has been applied to beam-columns under axial compression. The results agree with nonlinear finite element analysis. Compared with previous step-by-step integration approach, this new method is more efficient and can be extended to multi-span beam-columns and other load combinations including lateral pressure. The presented beam-column model is ideally suited for ultimate strength prediction of stiffened steel panels of ships and offshore structures.


1992 ◽  
Vol 114 (3) ◽  
pp. 175-184 ◽  
Author(s):  
Y. Li ◽  
A. Kareem

The wave forces computed at the displaced position of offshore structures may introduce additional drift forces. This contribution is particularly significant for compliant offshore structures that are configured by design to experience large excursions under the environmental load effects, e.g., tension leg platform. In a random sea environment, this feature can be included in the time domain analysis by synthesizing drag and diffraction forces through a summation of a large number of harmonics with an appropriate phase relationship that reflects the platform displaced position. This approach is not only limited to the time domain analysis, but the superposition of a large number of trigonometric terms in such an analysis requires a considerable computational effort. This paper presents a computationally efficient procedure in both the time and frequency domains that permits inclusion of the time-dependent drift forces, introduced by the platform displacement, in terms of linear and nonlinear feedback contributions. These time-dependent feedback forces are expressed in terms of the applied wave loads by linear and quadratic transformations. It is demonstrated that the results obtained by this approach exhibit good agreement with the procedure based on the summation of trigonometric functions.


Sign in / Sign up

Export Citation Format

Share Document