Hatch Seal Design Parameters for Manned Submersibles

Author(s):  
Jerry A. Henkener ◽  
Donald W. Johnson

Southwest Research Institute conducted a test program on the 26-inch diameter hatch seal o-ring for a manned submersible vehicle. The tests measured o-ring extrusion at pressure differentials across the seal of up to 1560 psig and gaps between the sealing surfaces of up to 0.110 inches. This paper presents a test protocol for determining the maximum gap that a given size o-ring can seal at a given pressure. This paper also presents charts of extrusion vs. seal gap and addresses the potential for o-ring damage when the sealed joint is depressurized. The test results were used in the design of the hatch seal for the U.S. Navy Pressurized Rescue Module and represent the first industry-wide o-ring design data for face seals in large diameter mechanical joints that do not close with pressure.

Author(s):  
Ahmed J. M. Gamal ◽  
John M. Vance

The effects of two seal design parameters, namely blade (tooth) thickness and blade profile, on labyrinth seal leakage, as well as the effect of operating a seal in an off-center position, were examined through a series of nonrotating tests. Two reconfigurable seal designs were used, which enabled testing of two-, four-, and six-bladed see-through labyrinth seals with different geometries using the same sets of seal blades. Leakage and cavity pressure measurements were made on each of 23 seal configurations with a in.(101.6mm) diameter journal. Tests were carried out with air as the working fluid at supply pressures of up to 100psia (6.89bar). Experimental results showed that doubling the thickness of the labyrinth blades significantly influenced leakage, reducing the flow rate through the seals by up to 20%. Tests to determine the effect of blade-tip profile produced more equivocal results, with the results of experiments using each of the two test seal designs contradicting each other. Tests on one set of hardware indicated that beveling blades on the downstream side was most effective in limiting leakage, whereas tests on newer hardware with tighter clearances indicated that seals with flat-tipped blades were superior. The test results illustrated that both blade profile and blade thickness could be manipulated so as to reduce seal leakage. However, an examination of the effects of both factors together indicated that the influence of one of these parameters can, to some extent, negate the influence of the other (especially in cases with tighter clearances). finally, for all configurations tested, results showed that leakage through a seal increases with increased eccentricity and that this phenomenon was considerably more pronounced at lower supply pressures.


1968 ◽  
Vol 90 (2) ◽  
pp. 510-519 ◽  
Author(s):  
H. S. Cheng ◽  
C. Y. Chow ◽  
D. F. Wilcock

In this paper, the pressure generation and static stability of face-type seals are discussed and an expression is developed to estimate the effectiveness of hydrodynamic action in these seals. Some design data are presented for the hydrostatic step seal, hydrostatic-orifice compensated seal, hybrid spiral-groove seal, and the shrouded Rayleigh step seal. These data are applicable to large-diameter seals for compressible fluids. The seal ring distortions due to initial imperfection, pressure, and thermal expansion are discussed. Approaches to estimate and to minimize the effects of these distortions are outlined. Finally, the ability of a face seal to track the vibrations of the runner is also discussed and methods required to determine the dynamic tracking for rigid or flexible seals are described.


1978 ◽  
Vol 20 (3) ◽  
pp. 159-167 ◽  
Author(s):  
I. T. Laurenson ◽  
J. P. O'Donoghue

The literature contains numerous references to applications where the designer has utilized the advantages of non-contacting hydrostatic seals to solve problems of operating under conditions of high speeds, pressures and temperatures. Examples vary from gas designs for turbines and compressors to liquid applications such as boiler feed pumps and liquid-sodium pumps for nuclear reactors. It is the view of the authors that this type of seal, proved under these very difficult operating conditions, has considerable advantages when compared to ‘balanced’ mechanical face seals. In this paper, the principles of operation of hydrostatic seals are presented and design data are given for orifice-, capillary- and slot-controlled designs, including a comparison of their performances under variable-temperature conditions. A method for optimizing the location of the seal groove is presented.


Author(s):  
Ahmed M. Gamal ◽  
John M. Vance

The effects of two seal design parameters, namely blade (tooth) thickness and blade profile, on labyrinth seal leakage, as well as the effect of operating a seal in an off-center position, were examined through a series of non-rotating tests. Two reconfigurable seal designs were used, which enabled testing of two- four-, and six-bladed see-through labyrinth seals with different geometries using the same sets of seal blades. Leakage and cavity pressure measurements were made on each of twenty-three seal configurations with a four inch (101.6 mm) diameter journal. Tests were carried out with air as the working fluid at supply pressures of up to 100 psi-a (6.89 bar-a). Experimental results showed that doubling the thickness of the labyrinth blades significantly influenced leakage, reducing the flow-rate through the seals by up to 20%. Tests to determine the effect of blade-tip profile produced more equivocal results, with the results of experiments using each of the two test seal designs contradicting each other. Tests on one set of hardware indicated that beveling blades on the downstream side was most effective in limiting leakage whereas tests on newer hardware with tighter clearances indicated that seals with flat-tipped blades were superior. The test results illustrated that both blade profile and blade thickness could be manipulated so as to reduce seal leakage. However, an examination of the effects of both factors together indicated that the influence of one of these parameters can, to some extent, negate the influence of the other (especially in cases with tighter clearances). Lastly, for all configurations tested, results showed that leakage through a seal increases with increased eccentricity and that this phenomenon was considerably more pronounced at lower supply pressures.


Author(s):  
Andrew Z. Boeckmann ◽  
Zakaria El-tayash ◽  
J. Erik Loehr

Some U.S. transportation agencies have recently applied mass concrete provisions to drilled shafts, imposing limits on maximum temperatures and maximum temperature differentials. On one hand, temperatures commonly observed in large-diameter drilled shafts have been observed to cause delayed ettringite formation (DEF) and thermal cracking in above-ground concrete elements. On the other, the reinforcement and confinement unique to drilled shafts should provide resistance to thermal cracking, and the provisions that have been applied are based on dated practices for above-ground concrete. This paper establishes a rational procedure for design of drilled shafts for durability requirements in response to hydration temperatures, which addresses both DEF and thermal cracking. DEF is addressed through maximum temperature differential limitations that are based on concrete mix design parameters. Thermal cracking is addressed through calculations that explicitly consider the thermo-mechanical response of concrete for predicted temperatures. Results from application of the procedure indicate consideration of DEF and thermal cracking potential for drilled shafts is prudent, but provisions that have been applied to date are overly restrictive in many circumstances, particularly the commonly adopted 35°F maximum temperature differential provision.


Author(s):  
Yiming Ma ◽  
Liusheng He ◽  
Ming Li

Steel slit shear walls (SSSWs), made by cutting slits in steel plates, are increasingly adopted in seismic design of buildings for energy dissipation. This paper estimates the seismic energy dissipation capacity of SSSWs considering out-of-plane buckling. In the experimental study, three SSSW specimens were designed with different width-thickness ratios and aspect ratios and tested under quasi-static cyclic loading. Test results showed that the width-thickness ratio of the links dominated the occurrence of out-of-plane buckling, which produced pinching in the hysteresis and thus reduced the energy dissipation capacity. Out-of-plane buckling occurred earlier for the links with a larger width-thickness ratio, and vice versa. Refined finite element model was built for the SSSW specimens, and validated by the test results. The concept of average pinching parameter was proposed to quantify the degree of pinching in the hysteresis. Through the parametric analysis, an equation was derived to estimate the average pinching parameter of the SSSWs with different design parameters. A new method for estimating the energy dissipation of the SSSWs considering out-of-plane buckling was proposed, by which the predicted energy dissipation agreed well with the test results.


Author(s):  
Jaegon Yoo ◽  
Koo-Tae Kang ◽  
Jin-Wook Huh ◽  
Chimahn Choi

Since gear noise in automotive is one of the most unpleasant noises for passengers, various solutions, such as gear design optimization, tooth modification and transfer path reformations in the vehicle have been developed. But, these attempts are mainly focused on the fundamental mesh excitation of the gear set without any consideration of their harmonic noise (1st, 2nd or higher). Harmonic gear whine noise is easily audible in the vehicle because of their high frequency characteristics in spite of low sound pressure level. This annoying pure-tone noise is usually issued in the transmission system composed of the gears produced by grinding process. This paper will present the main sources of this harmonic gear whine noise with the test results of gears with identical design parameters but having different surface structure (roughness parameters, wave patterns). Additionally, manufacturing guidelines of gear surface structure will be proposed at the end of this paper.


Author(s):  
H. Schwarz ◽  
J. Friedrichs ◽  
J. Flegler

Brush seals, which were originally designed for gas turbine applications, have been successfully applied to large-scale steam turbines within the past decade. From gas turbine applications, the fundamental behavior and designing levers are known. However, the application of brush seals to a steam turbine is still a challenge. This challenge is mainly due to the extreme load on the brush seal while operating under steam. Furthermore, it is difficult to test brush seals under realistic conditions, i.e. under live steam conditions with high pressure drops. Due to these insufficiencies, 2 test rigs were developed at the University of Technology Braunschweig, Germany. The first test rig is operated under pressurized air and allows testing specific brush seal characteristics concerning their general behavior. The knowledge gained from these tests can be validated in the second test rig, which is operated under steam at pressure drops of 45 bar and temperatures up to 450 °C. Using both the air test rig and the steam test rig helps keep the testing effort comparably small. Design variants can be pre-tested with air, and promising brush seal designs can consequently be tested in the steam seal test rig. The paper focuses on a clamped brush seal design which, amongst others, is used in steam turbine blade paths and shaft seals of current Siemens turbines. The consequences of the brush assembly on the brush appearance and brush performance are shown. The clamped brush seal design reveals several particularities compared to welded brushes. It could be shown that the clamped bristle pack tends to gape when clamping forces rise. Gapping results in an axially expanding bristle pack, where the bristle density per unit area and the leakage flow vary. Furthermore, the brush elements are usually assembled with an axial lay angle, i.e. the bristles are reclined against the backing plate. Hence, the axial lay angle is also part of the investigation.


Author(s):  
David A. Nichols ◽  
Anthony F. Luscher

Abstract This paper focuses on developing improved design equations to estimate the retention strength, insertion force, and insertion strain of a particular snap-fit, the post and dome feature. Finite element methods and multiple regression techniques were used in lieu of beam equations to develop the improved design equations. Sensitivity data is plotted for both the main effects and selected variable interactions. A study of detailed catch geometry was done in order to identify an optimal catch geometry. Typical design parameters were varied in order to develop design equations for users of this feature. The post and dome feature was selected for analysis because it is a high performance snap-fit that is self-datuming and can take some shear loading in addition to retention. The post and dome provide a higher ratio of retention force to insertion force than traditional cantilever snap-fits, and retention is less dependent on friction.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6431
Author(s):  
Libo Chen ◽  
Xiaoyan Yang ◽  
Lichen Li ◽  
Wenbing Wu ◽  
M. Hesham El Naggar ◽  
...  

The research on the deformation mechanism of monopile foundation supporting offshore wind turbines is significant to optimize the design of a monopile foundation under wave and current load. In this paper, a three-dimensional wave-pile-soil coupling finite element model is proposed to investigate the deformation mechanism of monopile undercurrent and fifth-order Stokes wave. Different from the conventional assumption that there is no slip at the pile-soil interface, Frictional contact is set to simulate the relative movement between monopile and soil. Numerical results indicate that under extreme environmental conditions, the monopile foundation sways within a certain range and the maximum displacement in the loading direction is 1.3 times the displacement in the reverse direction. A further investigation has been made for a large-diameter pipe pile with various design parameters. The finite element analyses reveal that the most efficient way to reduce the deflection of the pile head is by increasing the embedment depth of the monopile. When the embedment depth is limited, increasing the pile diameter is a more effective way to strengthen the foundation than increasing the wall thickness.


Sign in / Sign up

Export Citation Format

Share Document