Hydrodynamic and Experimental Analysis on a Novel Hybrid Offshore Renewable Structure

Author(s):  
Kurt Delpeche

Since the Kyoto Protocol in Japan in 1997, countries have been on a drive to reduce their carbon emissions but recently this drive has been given a new thrust. Security of energy supplies is now a high priority and one of the possible methods is by harnessing offshore renewable energy. It is proposed, that the use of a hybrid or a combination of two sources of renewable energy that utilizes a single floating structure can effectively reduce the cost of delivering renewable energy. Cost reduction is of key importance, however, it will not be the focus of this paper as it is a well proven concept. However, the motion characteristics of such a novel structure as the one that is presented here has never been fully examined and the literature is very limited on the subject. A scaled model of a conceptual structure was fabricated and subjected to regular waves for a range of wave heights and periods. The effect of wave-current interaction was noted and mooring line forces were measured. Conventional hydrodynamic analysis and rules used in ship structures and semi-submersible design were merged into one cohesive analysis and a comparison was made with the experimental results. There are two operational states that are mentioned, the ‘hybrid mode’ i.e. acting as a barge and a semisubmersible by virtue of the volume of the structure below the Mean Water Level (MWL). The second state is the ‘semisubmersible mode’, which has the pontoon and 75% column of the structure only below the MWL.

2020 ◽  
Vol 119 (820) ◽  
pp. 317-322
Author(s):  
Michael T. Klare

By transforming patterns of travel and work around the world, the COVID-19 pandemic is accelerating the transition to renewable energy and the decline of fossil fuels. Lockdowns brought car commuting and plane travel to a near halt, and the mass experiment in which white-collar employees have been working from home may permanently reduce energy consumption for business travel. Renewable energy and electric vehicles were already gaining market share before the pandemic. Under pressure from investors, major energy companies have started writing off fossil fuel reserves as stranded assets that are no longer worth the cost of extracting. These shifts may indicate that “peak oil demand” has arrived earlier than expected.


RSC Advances ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 5432-5443
Author(s):  
Shyam K. Pahari ◽  
Tugba Ceren Gokoglan ◽  
Benjoe Rey B. Visayas ◽  
Jennifer Woehl ◽  
James A. Golen ◽  
...  

With the cost of renewable energy near parity with fossil fuels, energy storage is paramount. We report a breakthrough on a bioinspired NRFB active-material, with greatly improved solubility, and place it in a predictive theoretical framework.


Author(s):  
Daniele Dessi ◽  
Sara Siniscalchi Minna

A combined numerical/theoretical investigation of a moored floating structure response to incoming waves is presented. The floating structure consists of three bodies, equipped with fenders, joined by elastic cables. The system is also moored to the seabed with eight mooring lines. This corresponds to an actual configuration of a floating structure used as a multipurpose platform for hosting wind-turbines, aquaculture farms or wave-energy converters. The dynamic wave response is investigated with numerical simulations in regular and irregular waves, showing a good agreement with experiments in terms of time histories of pitch, heave and surge motions as well as of the mooring line forces. To highlight the dynamical behavior of this complex configuration, the proper orthogonal decomposition is used for extracting the principal modes by which the moored structure oscillates in waves giving further insights about the way waves excites the structure.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3611
Author(s):  
Sandra Gonzalez-Piedra ◽  
Héctor Hernández-García ◽  
Juan M. Perez-Morales ◽  
Laura Acosta-Domínguez ◽  
Juan-Rodrigo Bastidas-Oyanedel ◽  
...  

In this paper, a study on the feasibility of the treatment of raw cheese whey by anaerobic co-digestion using coffee pulp residues as a co-substrate is presented. It considers raw whey generated in artisanal cheese markers, which is generally not treated, thus causing environmental pollution problems. An experimental design was carried out evaluating the effect of pH and the substrate ratio on methane production at 35 °C (i.e., mesophilic conditions). The interaction of the parameters on the co-substrate degradation and the methane production was analyzed using a response surface analysis. Furthermore, two kinetic models were proposed (first order and modified Gompertz models) to determine the dynamic profiles of methane yield. The results show that co-digestion of the raw whey is favored at pH = 6, reaching a maximum yield of 71.54 mLCH4 gVSrem−1 (31.5% VS removed) for raw cheese whey and coffee pulp ratio of 1 gVSwhey gVSCoffe−1. The proposed kinetic models successfully fit the experimental methane production data, the Gompertz model being the one that showed the best fit. Then, the results show that anaerobic co-digestion can be used to reduce the environmental impact of raw whey. Likewise, the methane obtained can be integrated into the cheese production process, which could contribute to reducing the cost per energy consumption.


Author(s):  
Frederico Finan ◽  
Maurizio Mazzocco

Abstract Politicians allocate public resources in ways that maximize political gains, and potentially at the cost of lower welfare. In this paper, we quantify these welfare costs in the context of Brazil’s federal legislature, which grants its members a budget to fund public projects within their states. Using data from the state of Roraima, we estimate a model of politicians’ allocation decisions and find that 26.8% of the public funds allocated by legislators are distorted relative to a social planner’s allocation. We then use the model to simulate three potential policy reforms to the electoral system: the adoption of approval voting, imposing a one-term limit, and redistricting. We find that a one-term limit and redistricting are both effective at reducing distortions. The one-term limit policy, however, increases corruption, which makes it a welfare-reducing policy.


Author(s):  
Niels Hørbye Christiansen ◽  
Per Erlend Torbergsen Voie ◽  
Jan Høgsberg ◽  
Nils Sødahl

Dynamic analyses of slender marine structures are computationally expensive. Recently it has been shown how a hybrid method which combines FEM models and artificial neural networks (ANN) can be used to reduce the computation time spend on the time domain simulations associated with fatigue analysis of mooring lines by two orders of magnitude. The present study shows how an ANN trained to perform nonlinear dynamic response simulation can be optimized using a method known as optimal brain damage (OBD) and thereby be used to rank the importance of all analysis input. Both the training and the optimization of the ANN are based on one short time domain simulation sequence generated by a FEM model of the structure. This means that it is possible to evaluate the importance of input parameters based on this single simulation only. The method is tested on a numerical model of mooring lines on a floating off-shore installation. It is shown that it is possible to estimate the cost of ignoring one or more input variables in an analysis.


Author(s):  
Will Brindley ◽  
Andrew P. Comley

In recent years a number of high profile mooring failures have emphasised the high risk nature of this element of a floating structure. Semi-submersible Mobile Offshore Drilling Units (MODUs) operating in the harsh North Sea environment have experienced approximately 3 mooring failures every 2 years, based on an average population of 34 units. In recognition of the high mooring failure rates, the HSE has introduced recommendations for more stringent mooring strength requirements for units operating on the UK Continental Shelf (UKCS) [17]. Although strength requirements are useful to assess the suitability of a mooring design, they do not provide an insight into the question: what is the reliability of the mooring system? This paper aims to answer this question by evaluating failure statistics over the most recent decade of available data. Mooring failure rates are compared between the Norwegian Continental Shelf (NCS), the UKCS, and with industry code targets to understand how overall reliability is related to the strength capacity of a mooring system. The failure statistics suggest that a typical MODU operating in the UKCS would experience a mooring line failure in heavy weather approximately every 20 operating years. This failure rate appears to be several orders of magnitude greater than industry targets used to calibrate mooring codes. Despite the increased strength requirements for the NCS, failure rates do not appear to be lower than the UKCS. This suggests that reliability does not correlate well with mooring system strength. As a result, designing to meet the more rigorous HSE requirements, which would require extensive upgrades to existing units, may not significantly increase mooring system reliability. This conclusion needs to be supported with further investigation of failure statistics in both the UKCS and NCS. In general, work remains to find practical ways to further understand past failures and so improve overall reliability.


Author(s):  
Josu Doncel ◽  
Nicolas Gast ◽  
Bruno Gaujal

We analyze a mean field game model of SIR dynamics (Susceptible, Infected, and Recovered) where players choose when to vaccinate. We show that this game admits a unique mean field equilibrium (MFE) that consists in vaccinating at a maximal rate until a given time and then not vaccinating. The vaccination strategy that minimizes the total cost has the same structure as the MFE. We prove that the vaccination period of the MFE is always smaller than the one minimizing the total cost. This implies that, to encourage optimal vaccination behavior, vaccination should always be subsidized. Finally, we provide numerical experiments to study the convergence of the equilibrium when the system is composed by a finite number of agents ( $N$ ) to the MFE. These experiments show that the convergence rate of the cost is $1/N$ and the convergence of the switching curve is monotone.


Author(s):  
S. V. Sreenivasan ◽  
P. Nanua

Abstract This paper addresses instantaneous motion characteristics of wheeled vehicles systems on even and uneven terrain. A thorough kinematic geometric approach which utilizes screw system theory is used to investigate vehicle-terrain combinations as spatial mechanisms that possess multiple closed kinematic chains. It is shown that if the vehicle-terrain combination satisfies certain geometric conditions, for instance when the vehicle operates on even terrain, the system becomes singular or non-Kutzbachian — it possesses finite range mobility that is different from the one obtained using Kutzbach criterion. An application of this geometric approach to the study of rate kinematics of various classes of wheeled vehicles is also included. This approach provides an integrated framework to study the kinematic effects of varying the vehicle and/or terrain geometric parameters from their nominal values. In addition, design enhancements of existing vehicles are suggested using this approach. This kinematic study is closely related to the force distribution characteristics of wheeled vehicles which is the subject of the companion paper [SN96].


Sign in / Sign up

Export Citation Format

Share Document