Numerical Simulation of Three-Layer-Liquid Sloshing by Multiphase MPS Method

Author(s):  
Xiao Wen ◽  
Decheng Wan

In the present study, three-layer-liquid sloshing in a rigid tank is simulated based on the newly developed multiphase MPS method. Firstly, the multiphase MPS method is introduced in detail, including the basic particle interaction models and the special interface treatments employed to extend single phase MPS solver to multiphase flows simulations. The new multiphase MPS method treats the multifluid system as the multi-density and multi-viscosity fluid, thus only a single set of equations needs to be solved for all phases. Besides, extra density smoothing technique, interparticle viscosity model and surface tension model are included in the present method for interface particles. The new multiphase MPS method is then applied to simulate three-layer-liquid sloshing in a rigid tank and verified through comparison with the experiment conducted by Molin et al. [1]. The predicted motion of interfaces by the present method shows a good agreement with the experimental data and other numerical results.

2019 ◽  
Author(s):  
Xiao Wen ◽  
Decheng Wan

Abstract In this paper, the dam-break problem is numerically simulated using two-phase moving particle semi-implicit (MPS) method. Firstly, the two-phase MPS method is extended from single-phase MPS method. The present method treats the multiphase system as a multi-density and multi-viscosity fluid, and a single set of equations could be used for the whole system. The interaction between particles of different phases is considered through the applications of inter-particle viscosity and density smoothing technique. The two-phase MPS method is then successfully applied to violent dam-break problem. The numerical results obtained by single-phase and two-phase method are both compared with experimental results in the open literature. The characteristics of air cavity are analyzed, including the pressure inside the cavity and the cavity shape deformation.


Author(s):  
Ruosi Zha ◽  
Heather Peng ◽  
Wei Qiu

Abstract A higher-order moving particle semi-implicit (MPS) method was developed to solve water entry problems. The Wendland kernel function was applied in the particle interaction model. Various models for pressure gradient were investigated. To overcome the inconsistency in the original MPS methods, a pressure gradient correction was implemented to guarantee the first-order consistency of gradient. The corrective matrix was modified by using the derivative of the kernel function. A particle shifting technique was also applied to improve the numerical stability. Validation studies were carried out for water entry of a rigid wedge with the tilting angles of 0°, 10° and 20°, and a rigid ship section. The solutions by the present method are generally in good agreement with experimental data and other published numerical results.


2020 ◽  
Author(s):  
Xiao Wen ◽  
Xiang Chen ◽  
Decheng Wan

Abstract In this paper, a new multiphase MPS-GPU method is proposed through the combination of moving particle semi-implicit (MPS) method and Graphics Processing Unit (GPU) acceleration technique. The new method not only inherits the advantage of MPS method in capturing complex interface deformations, but also overcomes the limitations of huge computational cost in three-dimensional MPS simulation. By this method, both the two-layer-liquid and three-layer-liquids sloshing problems are simulated three-dimensionally on the GPU device, in which more than one million of particles are included. In simulations, the sloshing patterns of each liquid layer under different external excitations are accurately captured. From the interface elevations and impacting pressures calculated by present method, it is found that an obvious discrepancy exists between the deformations of free surface and phase interfaces. Then, the results obtained by multiphase MPS-GPU method are compared with experimental data and other numerical results in open literature and a good agreement is achieved, which validates the accuracy and applicability of the present method in three-dimensional simulations of multi-layer-liquid sloshing flows.


Author(s):  
V.P. Bondarenko ◽  
O.O. Matviichuk

Detail investigation of equilibrium chemical reactions in WO3–H2O system using computer program FacktSage with the aim to establish influence of temperature and quantity of water on formation of compounds of H2WO4 and WO2(OH)2 as well as concomitant them compounds, evaporation products, decomposition and dissociation, that are contained in the program data base were carried out. Calculations in the temperature range from 100 to 3000 °С were carried out. The amount moles of water added to 1 mole of WO3 was varied from 0 to 27. It is found that the obtained data by the melting and evaporation temperatures of single-phase WO3 are in good agreement with the reference data and provide additionally detailed information on the composition of the gas phase. It was shown that under heating of 1 mole single-phase WO3 up to 3000 °С the predominant oxide that exist in gaseous phase is (WO3)2. Reactions of it formation from other oxides ((WO3)3 and (WO3)4) were proposed. It was established that compound H2WO4 is stable and it is decomposed on WO3 and H2O under 121 °C. Tungsten Oxide Hydrate WO2(OH)2 first appears under 400 °С and exists up to 3000 °С. Increasing quantity of Н2О in system leads to decreasing transition temperature of WO3 into both liquid and gaseous phases. It was established that adding to 1 mole WO3 26 mole H2O maximum amount (0,9044–0,9171 mole) WO2(OH)2 under temperatures 1400–1600 °С can be obtained, wherein the melting stage of WO3 is omitted. Obtained data also allowed to state that that from 121 till 400 °С WO3–Н2O the section in the О–W–H ternary system is partially quasi-binary because under these temperatures in the system only WO3 and Н2O are present. Under higher temperatures WO3–Н2O section becomes not quasi-binary since in the reaction products WO3 with Н2O except WO3 and Н2O, there are significant amounts of WO2(OH)2, (WO3)2, (WO3)3, (WO3)4 and a small amount of atoms and other compounds. Bibl. 12, Fig. 6, Tab. 5.


Author(s):  
Y. Ait Ferhat ◽  
A. Boulenouar ◽  
N. Benamara ◽  
L. Benabou

The main objective of this work is to present a numerical modeling of mixed-mode fracture in isotropic functionally graded materials (FGMs), under mechanical and thermal loading conditions. In this paper, the displacement-based method, termed the generalized displacement correlation (GDC) method, is investigated for estimating stress intensity factor (SIF). Using the ANSYS Parametric Design Language (APDL), the continuous variations of the material properties are incorporated by specified parameters at the centroid of each element. This paper presents various numerical examples in which the accuracy of the present method is verified. Comparisons have been made between the SIFs predicted by the GDC method and the available reference solutions in the current literature. A good agreement is achieved between the results of the GDC method and the reference solutions.


2013 ◽  
Vol 12 (06) ◽  
pp. 1350057 ◽  
Author(s):  
HSIU-YA TASI ◽  
CHAOYUAN ZHU

Dielectric constants and Seebeck coefficients for semiconductor materials are studied by thermodynamic method plus ab initio quantum density functional theory (DFT). A single molecule which is formed in semiconductor material is treated in gas phase with molecular boundary condition and then electronic polarizability is directly calculated through Mulliken and atomic polar tensor (APT) density charges in the presence of the external electric field. This electronic polarizability can be converted to dielectric constant for solid material through the Clausius–Mossotti formula. Seebeck coefficient is first simulated in gas phase by thermodynamic method and then its value divided by its dielectric constant is regarded as Seebeck coefficient for solid materials. Furthermore, unit cell of semiconductor material is calculated with periodic boundary condition and its solid structure properties such as lattice constant and band gap are obtained. In this way, proper DFT function and basis set are selected to simulate electronic polarizability directly and Seebeck coefficient through chemical potential. Three semiconductor materials Mg 2 Si , β- FeSi 2 and SiGe are extensively tested by DFT method with B3LYP, BLYP and M05 functionals, and dielectric constants simulated by the present method are in good agreement with experimental values. Seebeck coefficients simulated by the present method are in reasonable good agreement with experiments and temperature dependence of Seebeck coefficients basically follows experimental results as well. The present method works much better than the conventional energy band structure theory for Seebeck coefficients of three semiconductors mentioned above. Simulation with periodic boundary condition can be generalized directly to treat with doped semiconductor in near future.


2008 ◽  
Vol 1107 ◽  
Author(s):  
Evelien Martens ◽  
Diederik Jacques ◽  
Tom Van Gerven ◽  
Lian Wang ◽  
Dirk Mallants

AbstractIn this study, Ca, Mg, Al, and Pb concentrations leached from uncarbonated and carbonated ordinary Portland cement – dried waste incinerator bottom ash samples during single extraction tests (EN12457 test) at a pH from 1 to 12, were modelled using the geochemical code PHREEQC. A good agreement was found between modelling results and experiments in terms of leached concentrations for Ca, Mg, and Al by defining a single set of pure mineralogical phases for both the uncarbonated and carbonated (three levels) samples. The model also predicted well the observed decrease in Ca leaching with increasing carbonation. Modelling results further revealed that leaching of Pb is not controlled by dissolution/precipitation of pure Pb containing minerals only (carbonates and (hydr)oxides). The addition of solid solutions (calcite-cerrusite and gibbsite-ferrihydrite-litharge solid solutions) and adsorption reactions on amorphous Fe- and Al-oxides improved the model representation of the experimentally observed amphoteric leaching profile of Pb from the cementitious material.


2000 ◽  
Vol 44 (01) ◽  
pp. 14-32
Author(s):  
Ming-Chung Fang

A three-dimensional method to analyze the motions of a ship running in waves is presented, including the effects of the steady-flow potential. Basically, the general formulations are based on the source distribution technique by which the ship hull surface is regarded as the assembly of many panels. The present study includes three algorithms for treating the corresponding Green function:the Hess & Smith algorithm for the part of simple source I/r,the complex plane contour integral of the Shen & Farell algorithm for the double integral of steady flow, andthe series expansions of the Telste & Noblesse algorithm for the Cauchy principal value integral of unsteady flow. The study reveals that the effect of steady flow on ship motions is generally small, but it still cannot be neglected in some cases, especially for the ship running in oblique waves. The effect also depends on the fore-aft configuration of the ship. The results predicted by the present method are found to be in fairly good agreement with existing experiments and other theories.


2021 ◽  
Author(s):  
Dmitriy Alekseevich Samolovov ◽  
Artem Igorevich Varavva ◽  
Vitalij Olegovich Polyakov ◽  
Ekaterina Evgenevna Sandalova

Abstract The study proposes an analytical method for calculating the productivity of horizontal wells in a line-drive development pattern in fields with oil rims. The paper presents an analysis of existing techniques and compares them with the results of detailed numerical experiments. It also shows the limited applicability of existing techniques. On the basis of the obtained solution of a single-phase flow equation for a line-drive pattern of horizontal wells, an analytical formula was obtained which more accurately describes the productivity of wells beyond the limits of applicability of existing methods. The resulting formula is in good agreement with the results of a detailed numerical experiment.


1948 ◽  
Vol 15 (1) ◽  
pp. 30-36
Author(s):  
Robert S. Levy

Abstract Least-work analysis of stress distribution in a reinforced circular monocoque cylinder is extended to determine the effect of bending resistant stringers located at the points of application of concentrated transverse loads. Calculations for a numerical example, with applied loads diametrically opposed, indicate that neglect of stringer bending rigidity results in calculated maximum shear stresses approximately 20 per cent conservative in the fields of load application and 50 per cent unsafe in an intermediate field. Further calculations indicate that the bending rigidity of the stringer has less effect when all loads are applied at the same circumferential location. Comparison of shear stresses, calculated by the present method with strain-rosette readings, indicate good agreement.


Sign in / Sign up

Export Citation Format

Share Document