Modal Interactions in Drillstring Borehole Interactions

Author(s):  
A. Kartheek ◽  
K. Vijayan ◽  
M. I. Friswell

Abstract Understanding the vibration of drillstrings is important for the economical and efficient extraction of oil. Vibrations involve bending, axial, and torsional vibration. Drillstring interaction with the borehole during whirling involves nonlinearities. For the present work the whirling interaction of the drillstring and borehole is studied using an equivalent conceptual experimental test rig and a theoretical model of the drillstring. The drillstring is modeled as an Euler Bernoulli beam with multiple discs considering damping and gyroscopic effects. The finite element method is used as a numerical technique and the eigenvalue problem is solved using a state space formulation. The forward whirling frequency obtained from the experiments was used to update the bearing stiffness of the theoretical model. The contact is modeled experimentally using a tube for the stator with added roughness to aggravate the friction effect. A run up analysis was carried out within the safe operating regime of the test rig and the frequencies were analyzed using a time frequency plot. The effect of typical system parameters was considered such as the location of the contact, the mode excited and the clearance. The results from the study indicated the possibility of interaction between the forward and backward whirling modes which increased the bandwidth of acceleration response.

Author(s):  
Amaroju Kartheek ◽  
Kiran Vijayan

Abstract Designing of an industrial gas turbine rotor needs a special attention to ensure safe and reliable operation of the entire machine. Rotor experiences bending, axial, and torsional vibration during the time of operation and Rotor-stator interaction during whirling involves nonlinearities in the form of friction and impact. Rub-impact is the most common fault in rotating machinery, which causes excessive vibration and reduces the efficiency of the machine. Therefore, it is very important to study and understand the contact phenomena in rotor dynamics. The purpose of this study is to understand the modal interactions that occur in a rotating flexible member. A conceptual test rig for the rotor-stator is developed experimentally and a corresponding numerical model for the system is developed. The test rig consists of a flexible rotor with two discs rotating within a localised conduit. The system is modelled as a Euler Bernoulli beam with two discs. Finite element method is used to model the system. The gyroscopic effects of the rotor also included in the model. The forward whirling frequency obtained from the experiments was used to update the bearing stiffness of the theoretical model. The contact is modelled experimentally using localised conduit with added roughness to aggravate the friction effect. A run-up analysis was carried out within the safe operating regime of the test rig and the frequencies were analysed using a time-frequency plot. The results from the study indicated the possibility of interaction between the forward and backward whirling modes which results in steady nonlinear backward whirl behaviour.


Author(s):  
Adarsh Divakaran ◽  
K. Vijayan ◽  
A. Kartheek

Abstract An experimental study and theoretical study is carried out to understand the vibration signature of a propeller shaft. A test rig consists of a rotor shaft and three-disc supported on hydrodynamic bearing was analyzed. Presence of hydrodynamic bearing makes the systems natural frequency speed dependent. A theoretical model of the rotor disc system was developed using FEM. The rotor was formulated on Euler–Bernoulli beam theory. Proportional damping was assumed for the shaft. The stiffness and damping coefficients of the bearing are calculated by short bearing assumption. A Campbell diagram was plotted to observe the variation in natural frequencies with rotational speed. There was an indication of mode approaching each other with a speed which could result in the self-excited phenomena such as “Oil whip”. The hydrodynamic forces in the fluid film produce Oil whip. The presence of Oil whip was ascertained by carrying out the experimental study. The time-frequency plot during the run-up indicated the presence of a whip. The study indicated the influence of modes on the whip phenomena. This can be used in forming guidelines for the safe operating regime for the propeller shaft.


Author(s):  
Onur Cakmak ◽  
Kenan Y. Sanliturk

In this paper, a dynamic model of a rotor-ball bearing system is developed in Msc. ADAMS commercial software. Contacts between the balls and the rings are modelled according to Hertzian theory. The bearing model is capable of representing the effects of bearing defects and internal clearances. When they are coupled with the rotor structures, bearings without any defect can also cause excessive vibrations due to the resonance characteristics of the system. In order to demonstrate these characteristics the rotor itself is modelled as a flexible shaft and a disc positioned at the free end of the shaft. The rotor-ball bearing model developed here is capable of representing the gyroscopic effects and the behaviour of the system under different unbalance conditions. Various case studies are performed and Campbell diagrams are obtained by using short-time Fourier transform method. A test rig consisting of two ball bearings, a shaft and a disc is also designed and developed so as to validate the theoretical model using experimental data. The test rig is developed in such a way that all of the elements are easy to assemble/disassamble, allowing quick observation of the system’s dynamic behaviour for different parameters including imbalance, internal clearance and bearing defects. Modal analysis and order tracking analysis were carried out using the test rig. Both the modal results and Campbell diagrams obtained using experimental data are compared with their theoretical counterparts. In the light of the experimental data, the theoretical model is validated for the purpose of further analyses and research.


Author(s):  
Tae Ho Kim ◽  
Moon Sung Park ◽  
Jongsung Lee ◽  
Young Min Kim ◽  
Kyoung-Ku Ha ◽  
...  

Gas foil bearings (GFBs) have clear advantages over oil-lubricated and rolling element bearings, by virtue of low power loss, oil-free operation in compact units, and rotordynamic stability at high speeds. However, because of the inherent low gas viscosity, GFBs have lower load capacity than the other bearings. In particular, accurate measurement of load capacity and dynamic characteristics of gas foil thrust bearings (GFTBs) is utmost important to widening their applications to high performance turbomachinery. In this study, a series of excitation tests were performed on a small oil-free turbomachinery with base excitations in the rotor axial direction to measure the dynamic load characteristics of a pair of six-pad, bump-type GFTBs, which support the thrust collar. An electromagnetic shaker provided dynamic sine sweep loads to the test bench (shaking table), which held rigidly the turbomachinery test rig for increasing excitation frequency from 10 Hz to 200 Hz. The magnitude of the shaker dynamic load, represented as an acceleration measured on the test rig, was increased up to 9 G (gravity). An eddy current sensor installed on the test rig housing measured the axial displacement (or vibrational amplitude) of the rotor thrust collar during the excitation tests. The axial acceleration of the rotor relative to the test rig was calculated using the measured displacement. A single degree-of-freedom base excitation model identified the frequency-dependent dynamic load capacity, stiffness, damping, and loss factor of the test GFTB for increasing shaker dynamic loads and increasing bearing clearances. The test results show that, for a constant shaker force and the test GFTB with a clearance of 155 μm, an increasing excitation frequency increases the dynamic load carried by the test GFTB, i.e., bearing reaction force, until a certain value of the frequency where it jumps down suddenly because of the influence from Duffing’s vibrations of the rotor. The bearing stiffness increases and the damping decreases dramatically as the excitation frequency increases. Generally, the bearing loss factor ranges from 0.5 to 1.5 independent of the frequency. As the shaker force increases, the bearing dynamic load, stiffness, damping, and loss factor increase depending on the excitation frequency. Interestingly, the agreements between the measured GFTB dynamic load versus the thrust runner displacement, the measured GFTB static load versus the structural deflection, and the predicted static load versus the thrust runner displacement are remarkable. Further tests with increasing GFTB clearances of 155, 180, 205, and 225 μm revealed that the vibrational amplitude increases and the jump-down frequency decreases with increasing clearances. The bearing load increases, but the bearing stiffness, damping, and loss factor decrease slightly as the clearance increases. The test results after a modification of the GFTB by rotating one side bearing plate by 30° relative to the other side bearing plate revealed insignificant changes in the dynamic characteristics. The present dynamic performance measurements provide a useful database of GFTBs for use in microturbomachinery.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Sabine Bauinger ◽  
Emil Goettlich ◽  
Franz Heitmeir ◽  
Franz Malzacher

For this work, reality effects, more precisely backward-facing steps (BFSs) and forward-facing steps (FFSs), and their influence on the flow through a two-stage two-spool turbine rig under engine-relevant conditions were experimentally investigated. The test rig consists of an high pressure (HP) and an low pressure (LP) stage, with the two rotors rotating in opposite direction with two different rotational speeds. An S-shaped transition duct, which is equipped with turning struts (so-called turning mid turbine frame (TMTF)) and making therefore a LP stator redundant, connects both stages and leads the flow from a smaller to a larger diameter. This test setup allows the investigation of a TMTF deformation, which occurs in a real aero-engine due to non-uniform warming of the duct during operation—especially during run up—and causes BFSs and FFSs in the flow path. This happens for nonsegmented ducts, which are predominantly part of smaller engines. In the case of the test rig, steps were not generated by varying temperature but by shifting the TMTF in horizontal direction while the rotor and its casing were kept in the same position. In this way, both BFSs and FFSs between duct endwalls and rotor casing could be created. In order to avoid steps further downstream of the interface between HP rotor and TMTF, the complete aft rig was moved laterally too. In this case, the aft rig incorporates among others the LP rotor, the LP rotor casing, and the deswirler downstream of the LP stage. In order to catch the influence of the steps on the whole flow field, 360 deg rake traverses were performed downstream of the HP rotor, downstream of the duct, and downstream of the LP rotor with newly designed, laser-sintered combi-rakes for the measurement of total pressure and total temperature. Only the compact design of the rakes, which can be easily realized by additive manufacturing, makes the aforementioned 360 deg traverses in this test rig possible and allows a number of radial measurements positions, which is comparable to those of a five-hole probe. To get a more detailed information about the flow, also five-hole probe measurements were carried out in three measurement planes and compared to the results of the combi-rakes.


1985 ◽  
Vol 107 (3) ◽  
pp. 411-418 ◽  
Author(s):  
M. M. Dede ◽  
M. Dogan ◽  
R. Holmes

The purpose of this paper is to establish a theoretical model to represent a sealed squeeze-film damper bearing and to assess it against results from a test rig, simulating the essential features of a medium-sized gas turbine aero engine.


Author(s):  
Kyle D. Dippery ◽  
Suzanne Weaver Smith

Abstract Time-frequency analysis is an approach to characterizing the nature of signals whose frequency content changes over time. Although the primary applications of this field have, to date, been in the area of communications and signal analysis, it is becoming known in the field of structural dynamics. This paper explores the application of two straightforward time-frequency techniques to several structures that exhibit internal resonance. In particular, the systems analyzed exhibit simple modal interactions and, in one case, a transition to chaos. While other methods exist for analysis of these types of behaviors, larger systems with more complex resonances maybe better analyzed with time-frequency techniques.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Wu Ouyang ◽  
Xuebing Zhang ◽  
Yong Jin ◽  
Xiaoyang Yuan

Accurate dynamic characteristic coefficients of water-lubricated rubber bearings are necessary to research vibration of ship propulsion system. Due to mixed lubrication state of water-lubricated rubber bearings, normal test rig and identification method are not applicable. This paper establishes a test rig to simulate shaft misalignment and proposes an identification method for water-lubricated rubber bearings, which utilizes rotor unbalanced motion to produce self-excited force rather than artificial excitation. Dynamic performance tests under different conditions are operated. The results show that when rotational speed is less than 700 r/min, even if specific pressure is 0.05 MPa, it is difficult to form complete water film for the rubber bearing which was investigated, and contact friction and collision of the shaft and bearing are frequent. In the mixed lubrication, water film, rubber, and contact jointly determine dynamic characteristics of water-lubricated rubber bearings. The contact condition has a significant effect on the bearing stiffness, and water film friction damping has a significant effect on bearing damping. As for the particular investigated bearing, when rotational speed is in the range of 400~700 r/min and specific pressure is in the range of 0.03~0.07 MPa, bearing stiffness is in the range of 5.6~10.06 N/μm and bearing damping is in the range of 1.25~2.02 Ns/μm.


Author(s):  
M. E. F. Kasarda ◽  
P. E. Allaire ◽  
R. R. Humphris ◽  
L. E. Barrett

Many rotating machines such as compressors, turbines and pumps have long thin shafts with resulting vibration problems. They would benefit from additional damping near the center of the shaft. Magnetic dampers have the potential to be employed in these machines because they can operate in the working fluid environment unlike conventional bearings. This paper describes an experimental test rig which was set up with a long thin shaft and several masses to represent a flexible shaft machine. An active magnetic damper was placed in three locations: near the midspan, near one end disk, and close to the bearing. With typical control parameter settings, the midspan location reduced the first mode vibration 82%, the disk location reduced it 75% and the bearing location attained a 74% reduction. Magnetic damper stiffness and damping values used to obtain these reductions were only a few percent of the bearing stiffness and damping values. A theoretical model of both the rotor and the damper was developed and compared to the measured results. The agreement was good.


Author(s):  
B. Samanta ◽  
C. Nataraj

A study is presented for detection and diagnostics of cracked rotors using soft computing techniques like adaptive neuro-fuzzy inference system (ANFIS), artificial neural networks (ANN) and genetic algorithms (GA). A simple model for a cracked rotor is used to simulate its transient response during startup for different levels of cracks. The transient response is processed through continuous wavelet transform (CWT) to extract time-frequency features for the normal and cracked conditions of the rotor. Several features including the wavelet energy distributions and the grey moment vectors (GMV) of the CWT scalograms are used as inputs for diagnosis of crack level. The parameters of the classifiers, ANFIS and ANN, along with the features from wavelet energy distribution and grey moment vectors are selected using GA maximizing the diagnostic success. The classifiers are trained with a subset of the data with known crack levels and tested using the other set of data (testing data), not used in training. The procedure is illustrated using the simulation data of a simple de Laval rotor with a ‘breathing’ crack for different crack levels during run-up through its critical speed. A comparison of diagnostic performance for the classifiers is presented. Results show the effectiveness of the proposed approach in detection and diagnosis of cracked rotors.


Sign in / Sign up

Export Citation Format

Share Document