scholarly journals Feasibility Study of Mooring Lines Design for a Floating Tidal Turbine Platform Using Double Hull Structure

Author(s):  
Nu Rhahida Arini ◽  
Philipp R. Thies ◽  
Lars Johanning ◽  
Edward Ransley ◽  
Scott Brown ◽  
...  

Abstract The aim of this paper is to study the mooring tension characteristics on a tidal energy converter (TIC) platform considering i) a horizontal and ii) a vertical tidal turbine. The study examines numerically the feasibility of a catenary mooring line for a modular tidal energy platform. A modular platform is designed and modelled with two floating hulls and anchored by studlink catenary mooring chains on the seabed. Vertical and horizontal axis turbines which have similar Cp are selected and modelled separately. The effect of those turbines on the mooring system are compared and the results informs lifetime of the mooring component for each turbine connection. The hydrodynamic model with no turbine is firstly developed and validated against an experiment with 1:12 scale ratio. The starboard fore mooring line tension, platform surge and pitch displacements are validated against the experiment. The model results show identical signal frequency with slightly different magnitude from the experiment. The mooring tension under vertical and horizontal tidal turbine operations in the particular environment is further examined. The result shows that the mooring line using selected vertical axis turbine experiences higher tension. For platform motions, the horizontal turbine generates slightly larger displacement in surge. However the pitch motion record shows equal displacement under both turbine operations. The selected vertical axis tidal turbine also produces longer lifetime mooring components.

2018 ◽  
Vol 42 (2) ◽  
pp. 97-107 ◽  
Author(s):  
D Cevasco ◽  
M Collu ◽  
CM Rizzo ◽  
M Hall

Despite several potential advantages, relatively few studies and design support tools have been developed for floating vertical axis wind turbines. Due to the substantial aerodynamics differences, the analyses of vertical axis wind turbine on floating structures cannot be easily extended from what have been already done for horizontal axis wind turbines. Therefore, the main aim of the present work is to compare the dynamic response of the floating offshore wind turbine system adopting two different mooring dynamics approaches. Two versions of the in-house aero-hydro-mooring coupled model of dynamics for floating vertical axis wind turbine (FloVAWT) have been used, employing a mooring quasi-static model, which solves the equations using an energetic approach, and a modified version of floating vertical axis wind turbine, which instead couples with the lumped mass mooring line model MoorDyn. The results, in terms of mooring line tension, fatigue and response in frequency have been obtained and analysed, based on a 5 MW Darrieus type rotor supported by the OC4-DeepCwind semisubmersible.


2021 ◽  
Vol 9 (9) ◽  
pp. 960
Author(s):  
Chun Bao Li ◽  
Mingsheng Chen ◽  
Joonmo Choung

It is essential to design a reasonable mooring line length that ensures quasi-static responses of moored floating structures are within an acceptable level, and that reduces the cost of mooring lines in the overall project. Quasi-static responses include the equilibrium position and the line tension of a moored floating structure (also called the mean value in a dynamic response), etc. The quasi-static responses derived by the classic catenary equation cannot present mooring–seabed interaction and hydrodynamic effects on a mooring line. While a commercial program can predict reasonable quasi-static responses, costly modeling is required. This motivated us to propose a new method for predicting quasi-static responses that minimizes the mechanical energy of the whole system based on basic geometric parameters, and that is easy to implement. In this study, the mechanical energy of moored floating structures is assumed to be the sum of gravitational–buoyancy potential energy, kinetic energy induced by drag forces, and spring potential energy derived by line tension. We introduce fundamental theoretical background for the development of the proposed method. We investigate the effect of quasi-static actions on mooring response, comparing the proposed method’s results with those from the catenary equation and ABAQUS software. The study reveals the shortcomings of the catenary equation in offshore applications. We also compare quasi-static responses derived by the AQWA numerical package with the results calculated from the proposed method for an 8 MW WindFloat 2 type of platform. Good agreement was drawn between the proposed method and AQWA. The proposed method proves more timesaving than AQWA in terms of modeling of mooring lines and floaters, and more accurate than the catenary equation, and can be used effectively in the early design phase of dimension mooring lengths for moored floating structures.


2020 ◽  
Vol 8 (2) ◽  
pp. 82
Author(s):  
Hui Yang ◽  
Yun-Peng Zhao ◽  
Chun-Wei Bi ◽  
Yong Cui

Enclosure aquaculture is a healthy and ecological aquaculture pattern developed in recent years to relieve the pressure due to the wild fish stock decline and water pollution. The object of this paper was a floating rope enclosure, which mainly consisted of floaters, mooring lines, sinkers and a net. In order to optimize mooring design factors, the hydrodynamic responses of the floating rope enclosure with different mooring systems in combined wave-current were investigated by experimental and numerical methods. Physical model experiments with a model scale of 1:50 were performed to investigate the hydrodynamic characteristics of a floating rope enclosure with 12 mooring lines. Based on the lumped mass method, the numerical model was established to investigate the effects of mooring design factors on the mooring line tension, force acting on the bottom, and the volume retention of the floating rope enclosure. Through the analysis of numerical and experimental results, it was found that the maximum mooring line tension of the floating rope enclosure occurs on both sides of the windward. Increasing the number of mooring lines on the windward side is helpful to reduce the maximum mooring line tension. Waves and current both have an influence on the mooring line tension; in contrast, currents have a more obvious effect on the mooring line tension than waves. However, the influence of the wave period on the maximum mooring line tension is small. The force endured by the bottom of the floating rope enclosure also changes periodically with the wave period. Yet, the maximum force endured by the bottom of floating rope enclosure occurred at the windward and leeward of the structure. The volume retention of the floating rope enclosure increased with the increasing amount of mooring lines.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Yuanhui Wang ◽  
Chuntai Zou ◽  
Fuguang Ding ◽  
Xianghui Dou ◽  
Yanqin Ma ◽  
...  

FPSO is widely used during the deep-sea oil and gas exploration operations, for which it is an effective way to keep their position by means of positioning mooring (PM) technology to ensure the long-term reliability of operations, even in extreme seas. Here, a kind of dynamic positioning (DP) controller in terms of structural reliability is presented for the single-point turret-moored FPSOs. Firstly, the mathematical model of the moored FPSO in terms of kinematics and dynamics is established. Secondly, the catenary method is applied to analyze the mooring line dynamics, and mathematical model of one single mooring line is set up based on the catenary equation. Thereafter, mathematical model for the whole turret mooring system is established. Thirdly, a structural reliability index is defined to evaluate the breaking strength of each mooring line. At the same time, control constraints are also considered to design a state feedback controller using the backstepping technique. Finally, a series of simulation tests are carried out for a certain turret-moored FPSO with eight mooring lines. It is shown in the simulation results that the moored FPSO can keep its position well in extreme seas. Besides, the FPSO mooring line tension is reduced effectively to ensure mooring lines safety to a large extent in harsh sea environment.


Author(s):  
Yuan Hongtao ◽  
Zeng Ji ◽  
Chen Gang ◽  
Mo Jian ◽  
Zhao Nan

This paper applies 3D potential theory and non-linear time domain coupled analysis method to analyze motion response of FPSO and dynamic response of mooring line of single mooring system. In addition, respectively to calculate mooring line tension of tension type and composite mooring line type and added buoy in mooring line. There the paper analyze different mooring lines to affect on the weight of single point mooring system of deepwater FPSO. Which expects to provide a theoretical basis for single point mooring system design and weight control.


Author(s):  
P. Chen ◽  
S. Chai ◽  
J. Ma

In order to investigate the effect of taut-wire mooring system on the motion performance of semi-submersible platforms, parametric studies of coupled motion responses are conducted using a time domain analysis in this study. The nonlinear dynamic characteristics of mooring lines and the interactions of platform and mooring lines are investigated. The parametric studies consist of investigating the effects of the hydrodynamic coefficients CA and CD of mooring line, tension dip angle, mooring line pretension, different taut-mooring arrangements and total number of mooring lines on the motion performance of a semi-submersible platform in water depth of 1500 meters, which is subjected to a 100 year return significant wave height of 13.3 meters, a peak period of 15.5 seconds, a current speed of 1.97 meters per second and wind speed of 55 meters per second. The wind and current both act in the same direction as the ocean waves in this study in order to estimate the maximum mooring line loads. The environmental load direction is varied from 0° to 90° at the interval of 15 degrees. Seven directions are calculated in total. The research results show that the different parameters, such as the hydrodynamic coefficients of the mooring line, tension dip angle, pre-tension, arrangement angle of mooring lines and total number of mooring lines, have different effects on the coupled motion responses. In particular, the arrangement angles of mooring lines have significant effect on motion responses and dynamic loads of mooring lines. The motion performance of semi-submersible platform and mooring line dynamic loads can be controlled effectively when these parameters are selected reasonably throughout parametric studies carefully designed and conducted.


2021 ◽  
Vol 9 (3) ◽  
pp. 250
Author(s):  
Ilan Robin ◽  
Anne-Claire Bennis ◽  
Jean-Claude Dauvin

The overall potential for recoverable tidal energy depends partly on the tidal turbine technologies used. One of problematic points is the minimum flow velocity required to set the rotor into motion. The novelty of the paper is the setup of an innovative method to model the fluid–structure interactions on tidal turbines. The first part of this work aimed at validating the numerical model for classical cases of rotation (forced rotation), in particular, with the help of a mesh convergence study. Once the model was independent from the mesh, the numerical results were tested against experimental data for both vertical and horizontal tidal turbines. The results show that a good correspondence for power and drag coefficients was observed. In the wake, the vortexes were well captured. Then, the fluid drive code was implemented. The results correspond to the expected physical behavior. Both turbines rotated in the correct direction with a coherent acceleration. This study shows the fundamental operating differences between a horizontal and a vertical axis tidal turbine. The lack of experiments with the free rotation speed of the tidal turbines is a limitation, and a digital brake could be implemented to overcome this difficulty.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1228
Author(s):  
Guangnian Li ◽  
Qingren Chen ◽  
Hanbin Gu

The hydrodynamic interference between tidal turbines must be considered when predicting their overall hydrodynamic performance and optimizing the layout of the turbine array. These factors are of great significance to the development and application of tidal energy. In this paper, the phenomenon of hydrodynamic interference of the tidal turbine array is studied by the hydrodynamic performance forecast program based on an unsteady boundary element model for the vertical-axis turbine array. By changing the relative positions of two turbines in the double turbine array to simulate the arrangement of different turbines, the hydrodynamic interference law between the turbines in the array and the influence of relative positions on the hydrodynamic characteristics in the turbine array are explored. The manner in which the turbines impact each other, the degree of influence, and rules for turbine array arrangement for maximum efficiency of the array will be discussed. The results of this study will provide technical insights to relevant researchers.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6407
Author(s):  
Niccolo Bruschi ◽  
Giulio Ferri ◽  
Enzo Marino ◽  
Claudio Borri

The spar buoy platform for offshore wind turbines is the most utilized type and the OC3 Hywind system design is largely used in research. This system is usually moored with three catenary cables with 120° between each other. Adding clump weights to the mooring lines has an influence on the platform response and on the mooring line tension. However, the optimal choice for their position and weight is still an open issue, especially considering the multitude of sea states the platform can be exposed to. In this study, therefore, an analysis on the influence of two such variables on the platform response and on the mooring line tension is presented. FAST by the National Renewable Energy Laboratory (NREL) is used to perform time domain simulations and Response Amplitude Operators are adopted as the main indicators of the clump weights effects. Results show that the clump weight mass is not as influential as the position, which turns out to be optimal, especially for the Surge degree of freedom, when closest to the platform.


Sign in / Sign up

Export Citation Format

Share Document