Experience of Xenon Oscillation During an Initial Physics Test of UCN Unit 5 in Korea

Author(s):  
Yong Rae Kim ◽  
Tae Young Choi ◽  
Sun Ho Shin ◽  
Ki Bong Seong

Initial core of Ulchin Nuclear Unit 3 (UCN3), which is one of earlier OPR1000 model, was 4 batches and designed as annual cycle after second cycle. The utility requested that UCN Unit 5 (UCN5), which is another of OPR1000 model, had capability of a longer cycle operation from second cycle. Therefore, KNF modified the number of batches from 4 to 3 for OPR1000 initial core, as well as, the number of burnable absorber, and the cutback length of the absorber. However, due to these changes, Xenon oscillation was slightly increased at 100% power during the physics test of UCN5, while that oscillation at 100% power in UCN3 had been gone down without any control rod motion. The xenon oscillation direction is related to axial stability index. The index of UCN3 increased from a slightly negative at BOC to positive at EOC, the index of UCN5 was positive even at BOC, which meant that the core does not go to be stable without the control rod motion. The core of UCN5 became the steady state by the insertion of control rods into the core. To meet the physics test condition, the oscillation was controlled by control rods immediately. After the happening, KNF optimized the cutback length of burnable absorber rods and applied to APR1400, which will keep being stable in xenon oscillation during physics test at the initial cycle.

Author(s):  
Mathias Sta˚lek ◽  
Jo´zsef Ba´na´ti ◽  
Christophe Demazie`re

A Main Steam Line Break (MSLB) is an important transient for Pressurized Water Reactors (PWR) due to the strong positive reactivity introduced by the over-cooling of the core. Since this effect is stronger when the Moderator Temperature Coefficient (MTC) has a large amplitude, a conservative result will be obtained for a high burnup of the fuel due to the more negative MTC late in the cycle. The calculations have been performed at a cycle burnup of 12.9742 GWd/tHM. The Swedish Ringhals-3 PWR is a three loop Westinghouse design, currently with a thermal power of 3000 MW. The PARCS model has 157 fuel assemblies of 8 different types. Four different types of reflector are used. The cross sections, and kinetic data were obtained from CASMO-4 calculations, using a cross section interface developed at the department. There are 24 axial nodes, and 2×2 radial nodes for each assembly. The transient option for calculating the effect of poisoning was used. The PARCS model has been validated against steady-state measurements from Ringhals-3 of the Relative Power Fraction (RPF) and of the core criticality. The RELAP5 model has 157 channels for the core which means that there is a one to one correspondence between the thermal hydraulics model and the neutronics model. There is eight axial nodes. Originally, the intention was to have 24 axial nodes but this proved not to work because of some limitation in RELAP5. There is currently no mixing between the different channels in the core. The feedwater, and turbines are modelled as boundary conditions. The stand-alone RELAP5 model has been validated against steady state measurements from Ringhals-3. A number of different cases were considered. In the first case, both the isolation of the feedwater for the broken loop, and all the control rods were assumed to work properly. For the second case one of the control rods was assumed to be stuck. The stuck rod was located in the fuel assembly with the highest power. This rod has also one of the highest rod worths. In the final case, the feedwater control valve for the broken loop was fully open. None of the cases led to any recriticality. The increase in power for each fuel assembly was also investigated. With the control rod located in the assembly with the highest power, the maximum power increase before scram turned out to be about 25% compared to the initial power.


Author(s):  
Tengfei Zhang ◽  
Hongchun Wu ◽  
Youqi Zheng ◽  
Liangzhi Cao ◽  
Yunzhao Li

As an effort to enhance the accuracy in simulating the operations of research reactors, a fuel management code system REFT was developed. Because of the possible complex assembly geometry and the core configuration of research reactors, the code system employed HELIOS in the lattice calculation to describe arbitrary 2D geometry, and used the 3D triangular nodal SN method transport solver, DNTR, to model unstructured geometry in the core analysis. Flux reconstruction with the least square method and micro depletion model for specific isotopes were incorporated in the code. At the same time, to make it more user friendly, a graphical user interface was also developed for REFT. In the analysis of the research reactors, the calculations involving the control rod movement are encountered frequently. The modeling of the control rods differential worth behavior is important in that the movement of the control rod may introduce variations on the reactivity. To handle the problem two effective ways of alleviating the control rod cusping effect are recently proposed, based on the established code system. The methodologies along with their application and validation will be discussed.


2016 ◽  
Vol 2 (2) ◽  
Author(s):  
Haykel Raouafi ◽  
Guy Marleau

The Canadian-SCWR is a heavy-water moderated supercritical light-water-cooled pressure tube reactor. It is fueled with CANada deuterium uranium (CANDU)-type bundles (62 elements) containing a mixture of thorium and plutonium oxides. Because the pressure tubes are vertical, the upper region of the core is occupied by the inlet and outlet headers render it nearly impossible to insert vertical control rods in the core from the top. Insertion of solid control devices from the bottom of the core is possible, but this option was initially rejected because it was judged impractical. The option that is proposed here is to use inclined control rods that are inserted from the side of the reactor and benefit from the gravitational pull exerted on them. The objective of this paper is to evaluate the neutronic performance of the proposed inclined control rods. To achieve this goal, we first develop a three-dimensional (3D) supercell model to simulate an inclined rod located between four vertical fuel cells. Simulations are performed with the SERPENT Monte Carlo code at five axial positions in the reactor to evaluate the effect of coolant temperature and density, which varies substantially with core height, on the reactivity worth of the control rods. The effect of modifying the inclination and spatial position of the control rod inside the supercell is then analyzed. Finally, we evaluate how boron poisoning of the moderator affects their effectiveness.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7377
Author(s):  
Michał Górkiewicz ◽  
Jerzy Cetnar

Control rods (CRs) have a significant influence on reactor performance. Withdrawal of a control rod leaves a region of the core significantly changed due to lack of absorber, leading to increased fission rate and later to Xe135 buildup. In this paper, an innovative concept of structured control rods made of tungsten is studied. It is demonstrated that the radial division of control rods made of tungsten can effectively compensate for the reactivity loss during the irradiation cycle of high-temperature gas-cooled reactors (HTGRs) with a prismatic core while flattening the core power distribution. Implementation of the radial division of control rods enables an operator to reduce this effect in terms of axial power because the absorber is not completely removed from a reactor region, but its amount is reduced. The results obtained from the characteristic evolution of the reactor core for CRs with a structured design in the burnup calculation using the refined timestep scheme show a very stable core evolution with a reasonably low deviation of the power density and Xe135 concentration from the average values. It is very important that all the distributions improve with burnup.


2015 ◽  
Vol 5 (2) ◽  
pp. 15-25
Author(s):  
Viet Ha Pham Nhu ◽  
Min Jae Lee ◽  
Sunghwan Yun ◽  
Sang Ji Kim

Power regulation systems of fast reactors are based on the signals of excore detectors. The excore detector weighting functions, which establish correspondence between the core power distribution and detector signal, are very useful for detector response analyses, e.g., in rod drop experiments. This paper presents the calculation of the weighting functions for a TRU burner mockup of the Korean Prototype Generation-IV Sodium-cooled Fast Reactor (named BFS-76-1A) using the MCNP5 multi-group adjoint capability. For generation of the weighting functions, all fuel assemblies were considered and each of them was divided into ten horizontal layers. Then the weighting functions for individual fuel assembly horizontal layers, the assembly weighting functions, and the shape annealing functions at RCP (Reactor Critical Point) and at conditions under which a control rod group was fully inserted into the core while other control rods at RCP were determined and evaluated. The results indicate that the weighting functions can be considered relatively insensitive to the control rods position during the rod drop experiments and therefore those weighting values at RCP can be applied to the dynamic rod worth simulation for the BFS-76-1A.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Yuki Honda ◽  
Nozomu Fujimoto ◽  
Hiroaki Sawahata ◽  
Shoji Takada ◽  
Kazuhiro Sawa

The high-temperature engineering test reactor (HTTR) is a block-type high-temperature gas-cooled reactor (HTGR), which was constructed in Japan. The operating data of HTTR with burn-up to about 370 EFPD (effective full-power days), which are very important for the development of HTGRs, have been collected in both zero-power and powered operations. In the aspects of code validation, the detailed prediction of temperature distribution in the core makes it difficult to validate the calculation code because of difficulty in measuring the core temperature directly in powered operation of the HTTR. In this study, the measured data of the control rod position, while keeping the temperature distribution in the core uniform at criticality in zero-power operation at the beginning of each operation cycle were compared with the calculated results by core physics design code of the HTTR. The measured data of the control rod position were modified based on the core temperature correlation. At the beginning of burn-up, the trends of burn-up characteristics are slightly different between experimental and calculation data. However, the calculated result shows less than 50 mm of small difference (total length of control rod is 4060 mm) to the measured one, which indicates that the calculated results appropriately reproduced burn-up characteristics, such as a decrease in uranium-235, accumulation in plutonium, and decrease in burnable absorber.


Author(s):  
Heng Yu ◽  
Guan-bo Wang ◽  
Da-zhi Qian ◽  
Yu-chuan Guo ◽  
Bo Hu

An increasing number of PSA programs concerning research reactors have been launched across the world. As with many other reactors, the CMRR (China Mianyang Research Reactor), a typical pool-type research reactor, regards the control rod shutdown system (CRSS) as its primary shutdown system which enables the reactor subcritical by dropping control rods into the core after a specific initiating event is detected. As a result, the CRSS is an essential ingredient of engineered safety features. It is necessary to enhance the reliability of the CRSS, ensuring the reactor can be successfully shut down when the ATWS — the anticipated transients without scram occurs. Therefore, additional facilities should be designed to cope with the extremely severe circumstance. Accordingly, the purpose of this paper is to evaluate the promotion of the CMRR’s safety degree and the reliability of its CRSS from the PSA’s perspective with an ATWS mitigation system installed. Results indicate that, by introducing the ATWS mitigation system, the failure probability of the CRSS can decrease from 1.52e−05 per demand to 3.35e−06 per demand, while the aggregate CDF (core damage frequency) induced by all IE (initiating event) groups, is able to decrease to a relatively low value 1.17e−05/y from its previous value 3.11e−06/y. It is apparent that the reliability of the CRSS as well as the safety degree of the overall reactor can be enhanced effectively by adding the ATWS mitigation system to the elementary design of the normal CRSS.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Yuki Honda ◽  
Nozomu Fujimoto ◽  
Hiroaki Sawahata ◽  
Shoji Takada ◽  
Kazuhiro Sawa

The high-temperature engineering test reactor (HTTR) is a block-type high-temperature gas-cooled reactor (HTGR). There are 32 control rods (16 pairs) in the HTTR. Six of the pairs of control rods are located in a core region and the remainder are located in a reflector region surrounding the core. Inserting all control rods simultaneously at the reactor scram in a full-power operation presents difficulty in maintaining the integrity of the metallic sleeve of the control rod because the core temperature of the HTTR is too high. Therefore, a two-step control rod insertion method is adopted for the reactor scram. The calculated control rod worth at the first step showed a larger underestimation than the measured value in the second step, although the calculated results of the excess reactivity tests showed good agreement with the measured result in the criticality tests of the HTTR. It is concluded that a cell model for the control rod guide block with the control rod in the reflector region is not suitable. In addition, in the core calculation, the macroscopic cross section of a homogenized region of the control rod guide block with the control rod is used. Therefore, it would be one of the reasons that the neutron flux distribution around the control rod in control rod guide block in the reflector region cannot be simulated accurately by the conventional cell model. In the conventional cell model, the control rod guide block is surrounded by the fuel blocks only, although the control rods in the reflector region are surrounded by both the fuel blocks and the reflector blocks. The difference of the neutron flux distribution causes the large difference of a homogenized macroscopic cross-section set of the control rod guide block with the control rod. Therefore, in this paper, the cell model is revised for the control rod guide block with the control rod in the reflector region to account for the actual configuration around the control rod guide block in the reflector region. The calculated control rod worth at the first step using the improved cell model shows better results than the previous one.


2011 ◽  
Vol 2011 ◽  
pp. 1-16
Author(s):  
Andrew M. Ward ◽  
Benjamin S. Collins ◽  
Marcelo Madariaga ◽  
Yunlin Xu ◽  
Thomas J. Downar

In order to analyze the steady state and transient behavior of CNA-II, several tasks were required. Methods and models were developed in several areas. HELIOS lattice models were developed and benchmarked against WIMS/MCNP5 results generated by NA-SA. Cross-sections for the coupled RELAP5/PARCS calculation were extracted from HELIOS within the GenPMAXS framework. The validation of both HELIOS and PARCS was performed primarily by comparisons to WIMS/PUMA and MCNP for idealized models. Special methods were developed to model the control rods and boron injection systems of CNA-II. The insertion of the rods is oblique, and a special routine was added to PARCS to treat this effect. CFD results combined with specialized mapping routines were used to model the boron injection system. In all cases there was good agreement in the results which provided confidence in the neutronics methods and modeling. A coupled code benchmark between U of M and U of Pisa is ongoing and results are still preliminary. Under a LOCA transient, the best estimate behavior of the core appears to be acceptable.


Author(s):  
Surian Pinem ◽  
Tukiran Surbakti ◽  
Iman Kuntoro

NEUTRONIC AND THERMAL HYDRAULICS ANALYSIS OF CONTROL ROD EFFECT ON THE OPERATION SAFETY OF TRIGA 2000 REACTOR. Analysis of neutronic and thermal-hydraulics parameters of whole operation cycle is very important for the safety of reactor operation. During the reactor operation cycle, the position of the control rods will change due to reactivity changes. The purpose of this study is to determine the effect of control rods position on neutronic and thermal-hydraulics parameters in relation to the safety of reactor operation of the TRIGA 2000 reactor using silicide fuel of MTR plate type. Those parameters are power peaking factor, reactivity coefficients, and steady-state thermohydraulic parameters. Neutronic calculations are performed using a combination of WIMSD/5 and Batan-3DIFF codes and for thermal-hydraulics the calculations are done using WIMSD/5 and MTRDYN codes. The calculation results show that the reactivity coefficient values are negative for all control rod positions both at CZP and HFP conditions. The MTC value decreases when the control rod is inserted into the active core while the FTC value increases. The total ppf results and temperature in steady-state rise when the control rods are inserted of into the active core whereby the maximum value occurs at the position of the control rods of 20 cm from the bottom of the active core. The calculation results of ppf, reactivity coefficient, and thermal-hydraulics parameters lay below safety limits, indicating that the TRIGA 2000 reactor can safely use U3Si2-Al silicide fuel as a substitute fuel for cylindrical type fuel.Keywords: neutronic, thermal-hydraulic parameter, control rod effect, TRIGA 2000, silicide fuel.


Sign in / Sign up

Export Citation Format

Share Document