Study on Generation Mechanisms of Abnormal Vibrations of Flow Dynamic Conveyers

Author(s):  
Kunihiko Ishihara

The FDC (Flow Dynamics Conveyer) has often been used in power plants and iron works because of its superiority in quietness compared with a roller type conveyer. Moreover, it is excellent in low noise and low power. The FDC consists of a trough and a belt, and the air is supplied from numerous holes provided on the trough. However, large vibrations occur when the flow rate reaches a certain value. This abnormal vibration is defined to be a self-excited vibration caused by leakage flow. It is well known that abnormal vibrations occur when the flow channel spreads out at the edges. The purpose of this study is to clarify the generation mechanism of the abnormal vibration. The experimental setup is made of steel. The trough is made of a thick plate and the belt is made of a thin plate with a thickness of 1.2mm. The air is supplied by a blower and the flow rate is adjusted by a ball valve. The flow rate is measured by a venturi tube and a liquid manometer. The loads are given by piling thick steels one by one with a weight of 1kg. The vibration of the belt center is measured by a laser displacement meter and the data are processed by a FFT analyzer. The experiment was carried out to examine the effects of various parameters such as the taper angle θ, the floating amount H generated by loads and flow rates on abnormal vibrations. Firstly, vibrations of the belt were obtained by changing loads and flow rates. When the flow rate is constant, the taper angle θ increases and the floating height of the belt H decreases with increasing loads. The area of abnormal vibrations could be obtained in the θ—H plane. Secondarily, the damping coefficients were obtained based on the free vibration method by changing loads and flow rates when abnormal vibrations did not occur. As a result, it was found that the damping ability decreases with an increase in the taper angle and a decrease in the floating height. Furthermore it was clarified that the abnormal vibrations occur for θ > αH (α: constant value).

Author(s):  
Kunihiko Ishihara

The FDC (Flow Dynamics Conveyer) has often been used in power plants and iron works because of superiority in low noise compared with a roller type conveyer and it is excellent in low noise and low power. The FDC consists of a trough and a belt, and the air is supplied from a series of holes provided on the trough. However, large vibrations occur when the flow rate reaches a certain value. This abnormal vibration is defined to be self-excited vibration caused by leakage flow induced vibration here. In this study, as the first step, the theoretical model of a non tapered clearance flow passage is assumed and the natural frequency is calculated. On that basis, experiments are conducted and the validity of the theory is examined. As the second step, in the case of a tapered clearance flow passage, the concentrated load is added to the belt. The effects of the belt deformation, the flow rate and the added loads on the clearance flow are examined and the generation mechanism of the abnormal vibration is considered. As a result, it was clarified that the generation mechanism of the self-excited vibration was due to the phase shift by the change of the parameters.


Author(s):  
Kunihiko Ishihara

This paper describes a self-excited vibration of a Flow Dynamic Conveyer (FDC). The FDC is often used in power plants and in iron works because of superiority in noise control compared with a roller type conveyer. The FDC consists of a trough and a belt, and the air is supplied from many holes provided on the trough. A large vibration suddenly occurs when the flow rate becomes the critical value. In this paper, some measurements were performed in order to clarify the phenomenon. As a result, it was found that the phenomenon was the self-excited vibration based on the interference between two vibration systems such as the load • air-spring system and the trough • supporting system.


1988 ◽  
Vol 53 (4) ◽  
pp. 788-806
Author(s):  
Miloslav Hošťálek ◽  
Jiří Výborný ◽  
František Madron

Steady state hydraulic calculation has been described of an extensive pipeline network based on a new graph algorithm for setting up and decomposition of balance equations of the model. The parameters of the model are characteristics of individual sections of the network (pumps, pipes, and heat exchangers with armatures). In case of sections with controlled flow rate (variable characteristic), or sections with measured flow rate, the flow rates are direct inputs. The interactions of the network with the surroundings are accounted for by appropriate sources and sinks of individual nodes. The result of the calculation is the knowledge of all flow rates and pressure losses in the network. Automatic generation of the model equations utilizes an efficient (vector) fixing of the network topology and predominantly logical, not numerical operations based on the graph theory. The calculation proper utilizes a modification of the model by the method of linearization of characteristics, while the properties of the modified set of equations permit further decrease of the requirements on the computer. The described approach is suitable for the solution of practical problems even on lower category personal computers. The calculations are illustrated on an example of a simple network with uncontrolled and controlled flow rates of cooling water while one of the sections of the network is also a gravitational return flow of the cooling water.


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 4
Author(s):  
Dillon Alexander Wilson ◽  
Kul Pun ◽  
Poo Balan Ganesan ◽  
Faik Hamad

Microbubble generators are of considerable importance to a range of scientific fields from use in aquaculture and engineering to medical applications. This is due to the fact the amount of sea life in the water is proportional to the amount of oxygen in it. In this paper, experimental measurements and computational Fluid Dynamics (CFD) simulation are performed for three water flow rates and three with three different air flow rates. The experimental data presented in the paper are used to validate the CFD model. Then, the CFD model is used to study the effect of diverging angle and throat length/throat diameter ratio on the size of the microbubble produced by the Venturi-type microbubble generator. The experimental results showed that increasing water flow rate and reducing the air flow rate produces smaller microbubbles. The prediction from the CFD results indicated that throat length/throat diameter ratio and diffuser divergent angle have a small effect on bubble diameter distribution and average bubble diameter for the range of the throat water velocities used in this study.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karine Arrhenius ◽  
Oliver Büker

AbstractThe study presents an optimised method to correct flow rates measured with a LFE flowmeter pre-set on methane while used for gas mixtures of unknown composition at the time of the measurement. The method requires the correction of the flow rate using a factor based on the viscosity of the gas mixtures once the composition is accurately known. The method has several different possible applications inclusive for the sampling of biogas and biomethane onto sorbent tubes for conformity assessment for the determination of siloxanes, terpenes and VOC in general. Five models for the calculation of the viscosity of the gas mixtures were compared and the models were used for ten binary mixtures and four multi-component mixtures. The results of the evaluation of the different models showed that the correction method using the viscosity of the mixtures calculated with the model of Reichenberg and Carr showed the smallest biases for binary mixtures. For multi-component mixtures, the best results were obtained when using the models of Lucas and Carr.


ORL ◽  
2021 ◽  
pp. 1-5
Author(s):  
Jingjing Liu ◽  
Tengfang Chen ◽  
Zhenggang Lv ◽  
Dezhong Wu

<b><i>Introduction:</i></b> In China, nasal cannula oxygen therapy is typically humidified. However, it is difficult to decide whether to suspend nasal cannula oxygen inhalation after the nosebleed has temporarily stopped. Therefore, we conducted a preliminary investigation on whether the use of humidified nasal cannulas in our hospital increases the incidence of epistaxis. <b><i>Methods:</i></b> We conducted a survey of 176,058 inpatients in our hospital and other city branches of our hospital over the past 3 years and obtained information concerning their use of humidified nasal cannulas for oxygen inhalation, nonhumidified nasal cannulas, anticoagulant and antiplatelet drugs, and oxygen inhalation flow rates. This information was compared with the data collected at consultation for epistaxis during these 3 years. <b><i>Results:</i></b> No significant difference was found between inpatients with humidified nasal cannulas and those without nasal cannula oxygen therapy in the incidence of consultations due to epistaxis (χ<sup>2</sup> = 1.007, <i>p</i> &#x3e; 0.05). The same trend was observed among hospitalized patients using anticoagulant and antiplatelet drugs (χ<sup>2</sup> = 2.082, <i>p</i> &#x3e; 0.05). Among the patients with an inhaled oxygen flow rate ≥5 L/min, the incidence of ear-nose-throat (ENT) consultations due to epistaxis was 0. No statistically significant difference was found between inpatients with a humidified oxygen inhalation flow rate &#x3c;5 L/min and those without nasal cannula oxygen therapy in the incidence of ENT consultations due to epistaxis (χ<sup>2</sup> = 0.838, <i>p</i> &#x3e; 0.05). A statistically significant difference was observed in the incidence of ENT consultations due to epistaxis between the low-flow nonhumidified nasal cannula and nonnasal cannula oxygen inhalation groups (χ<sup>2</sup> = 18.428, <i>p</i> &#x3c; 0.001). The same trend was observed between the 2 groups of low-flow humidified and low-flow nonhumidified nasal cannula oxygen inhalation (χ<sup>2</sup> = 26.194, <i>p</i> &#x3c; 0.001). <b><i>Discussion/Conclusion:</i></b> Neither high-flow humidified nasal cannula oxygen inhalation nor low-flow humidified nasal cannula oxygen inhalation will increase the incidence of recurrent or serious epistaxis complications; the same trend was observed for patients who use anticoagulant and antiplatelet drugs. Humidification during low-flow nasal cannula oxygen inhalation can prevent severe and repeated epistaxis to a certain extent.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Tobias Blanke ◽  
Markus Hagenkamp ◽  
Bernd Döring ◽  
Joachim Göttsche ◽  
Vitali Reger ◽  
...  

AbstractPrevious studies optimized the dimensions of coaxial heat exchangers using constant mass flow rates as a boundary condition. They show a thermal optimal circular ring width of nearly zero. Hydraulically optimal is an inner to outer pipe radius ratio of 0.65 for turbulent and 0.68 for laminar flow types. In contrast, in this study, flow conditions in the circular ring are kept constant (a set of fixed Reynolds numbers) during optimization. This approach ensures fixed flow conditions and prevents inappropriately high or low mass flow rates. The optimization is carried out for three objectives: Maximum energy gain, minimum hydraulic effort and eventually optimum net-exergy balance. The optimization changes the inner pipe radius and mass flow rate but not the Reynolds number of the circular ring. The thermal calculations base on Hellström’s borehole resistance and the hydraulic optimization on individually calculated linear loss of head coefficients. Increasing the inner pipe radius results in decreased hydraulic losses in the inner pipe but increased losses in the circular ring. The net-exergy difference is a key performance indicator and combines thermal and hydraulic calculations. It is the difference between thermal exergy flux and hydraulic effort. The Reynolds number in the circular ring is instead of the mass flow rate constant during all optimizations. The result from a thermal perspective is an optimal width of the circular ring of nearly zero. The hydraulically optimal inner pipe radius is 54% of the outer pipe radius for laminar flow and 60% for turbulent flow scenarios. Net-exergetic optimization shows a predominant influence of hydraulic losses, especially for small temperature gains. The exact result depends on the earth’s thermal properties and the flow type. Conclusively, coaxial geothermal probes’ design should focus on the hydraulic optimum and take the thermal optimum as a secondary criterion due to the dominating hydraulics.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 339
Author(s):  
Musa Bah ◽  
Muhammad Afzal Rashid ◽  
Khalid Javed ◽  
Talat Naseer Pasha ◽  
Muhammad Qamer Shahid

Water buffaloes wallow in water to combat heat stress during summer. With the decreasing reservoirs for wallowing, the farmers use sprinklers to cool the buffaloes in Pakistan. These sprinklers use a large quantity of groundwater, which is becoming scarce. The objective of the current study was to determine the effect of different sprinkler flow rates on the physiological, behavioral, and production responses of Nili Ravi buffaloes during summer. Eighteen buffaloes were randomly subjected to three sprinkler flow rate treatments in a double replicated 3 × 3 Latin square design. The flow rates were 0.8, 1.25, and 2.0 L/min. During the study, the average afternoon temperature humidity index was 84.6. The 1.25 and 2.0 L/min groups had significantly lower rectal temperature and respiratory rates than the 0.8 L/min group. Water intake was significantly higher in the 0.8 L/min group. Daily milk yield was higher in the 1.25 and 2.0 L/min groups than in the 0.8 L/min group. These results suggested that the sprinkler flow rates > 0.8 L/min effectively cooled the buffaloes. The sprinkler flow rate of 1.25 L/min appeared to be more efficient, as it used 37.5% less water compared to the 2.0 L/min.


2001 ◽  
Vol 7 (3) ◽  
pp. 173-181
Author(s):  
Tong-Miin Liou ◽  
Meng-Yu Chen

Laser-Doppler velocimetry (LDV) measurements are presented of relative mean velocity and turbulence intensity components inside the impeller passage of a centrifugal fan with twelve backward curved blades at design, under-design, and over-design flow rates. Additional LDV measurements were also performed at the volute outlet to examine the uniformity of the outlet flow for the three selected flow rates. Complementary flow visualization results in the tongue region are further presented. It is found that the number of characteristic flow regions and the average turbulence level increase with decreasing air flow rate. For the case of under-design flow rate, there are a through-flow region on the suction side, a reverse flow region on the pressure side, and a shear layer region in between. The corresponding average turbulence intensity is as high as 9.1% of blade tip velocity.


Energies ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 112 ◽  
Author(s):  
Yonghong Guo ◽  
Huimin Wei ◽  
Xiaoru Yang ◽  
Weijia Wang ◽  
Xiaoze Du ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document