Fluid Damping in Fuel Assemblies

Author(s):  
Pierre Moussou ◽  
Adrien Guilloux ◽  
Eric Boccaccio ◽  
Guillaume Ricciardi

Damping is known to be a major parameter in the seismic design of nuclear facilities. Of special interest is the case of fuel assemblies in PWR plants, which, unlike other components, are submitted to axial flows: it has been known since the late 80s that their frequency response to lateral excitations was largely dependent on the flow velocity, and the issue raised by this observation is to determine a consistent fluid force model which could be used in seismic design. In the scientific literature, the standard model of fluid forces exerted upon an oscillating slender body was originally derived by Lighthill, and it involves a lift coefficient which, up to a reference frame shift, describes the force generated by a small angle of inclination of the body axis against the flow direction. Recent works by Divaret et al. have provided a value of this lift coefficient equal to 0.11 for a single cylinder, and to 0.18 for a square array of 5 by 8 cylinders, the Reynolds numbers being in the range of 104. Sticking to the idea that the damping stems from the local angle of inclination of the structure against the flow direction, the present study revisits recent tests performed in the Hermes test rig of CEA Cadarache, where a fuel assembly was submitted to incipient flow velocities varying from 1.5 to 5m.s−1, and to a lateral force exerted upon the middle grid, generating displacements in the ranges of a few mm and of a few Hz. Under the assumption that the fuel assembly behaves in an approximately linear manner and that it undergoes harmonic deformations close to its first natural mode shape, the dissipative fluid force can be expressed by an adequate combination of the hydraulic cylinder force and of the structure displacements. A lift coefficient equal to 0.3–0.4 is obtained with this procedure, which stands for the overall fuel bundle, rods and grids included.

Author(s):  
Yuxian Rao ◽  
Lei Yu

The floating nuclear power plant (FNPP) is recently received increasing attention in China. The effects of ship motions on the working fluid of marine-type reactor are not only a change of effective gravity, but also an appearance of additional forces, which requires further researches. This paper focuses on the derivation of body force model under 6 typical ocean conditions. The derived model consists of body force terms based on both three-dimensional and one-dimensional momentum equations and can be applied to the pipe with an arbitrary flow direction. For programming calculation, the integrations with respect to spatial and time variables are performed for the body force terms of one-dimensional momentum equations under 6 typical ocean conditions. For verification purpose, the deprived model is implemented into the RELAP5 code and a two-loop single phase natural circulation system is analyzed using the modified RELAP5 code under 6 typical ocean conditions. The calculation results show that the deprived model is reasonable.


2010 ◽  
pp. 50-56
Author(s):  
Pablo R. Rubiolo ◽  
Guy Chaigne ◽  
Pierre Peturand ◽  
Jérôme Bigot ◽  
Jean-François Desseignes ◽  
...  

Author(s):  
Frank T. Smith ◽  
Edward R. Johnson

A body of finite size is moving freely inside, and interacting with, a channel flow. The description of this unsteady interaction for a comparatively dense thin body moving slowly relative to flow at medium-to-high Reynolds number shows that an inviscid core problem with vorticity determines much, but not all, of the dominant response. It is found that the lift induced on a body of length comparable to the channel width leads to differences in flow direction upstream and downstream on the body scale which are smoothed out axially over a longer viscous length scale; the latter directly affects the change in flow directions. The change is such that in any symmetric incident flow the ratio of slopes is found to be cos ⁡ ( π / 7 ) , i.e. approximately 0.900969, independently of Reynolds number, wall shear stresses and velocity profile. The two axial scales determine the evolution of the body and the flow, always yielding instability. This unusual evolution and linear or nonlinear instability mechanism arise outside the conventional range of flow instability and are influenced substantially by the lateral positioning, length and axial velocity of the body.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1818
Author(s):  
Di-Si Wang ◽  
Bo Liu ◽  
Sheng Yang ◽  
Bin Xi ◽  
Long Gu ◽  
...  

China is developing an ADS (Accelerator-Driven System) research device named the China initiative accelerator-driven system (CiADS). When performing a safety analysis of this new proposed design, the core behavior during the steam generator tube rupture (SGTR) accident has to be investigated. The purpose of our research in this paper is to investigate the impact from different heating conditions and inlet steam contents on steam bubble and coolant temperature distributions in ADS fuel assemblies during a postulated SGTR accident by performing necessary computational fluid dynamics (CFD) simulations. In this research, the open source CFD calculation software OpenFOAM, together with the two-phase VOF (Volume of Fluid) model were used to simulate the steam bubble behavior in heavy liquid metal flow. The model was validated with experimental results published in the open literature. Based on our simulation results, it can be noticed that steam bubbles will accumulate at the periphery region of fuel assemblies, and the maximum temperature in fuel assembly will not overwhelm its working limit during the postulated SGTR accident when the steam content at assembly inlet is less than 15%.


Author(s):  
R. V. Chima

In this work computational models were developed and used to investigate applications of vortex generators (VGs) to turbomachinery. The work was aimed at increasing the efficiency of compressor components designed for the NASA Ultra Efficient Engine Technology (UEET) program. Initial calculations were used to investigate the physical behavior of VGs. A parametric study of the effects of VG height was done using 3-D calculations of isolated VGs. A body force model was developed to simulate the effects of VGs without requiring complicated grids. The model was calibrated using 2-D calculations of the VG vanes and was validated using the 3-D results. Then three applications of VGs to a compressor rotor and stator were investigated: 1. The results of the 3-D calculations were used to simulate the use of small casing VGs used to generate rotor preswirl or counterswirl. Computed performance maps were used to evaluate the effects of VGs. 2. The body force model was used to simulate large partspan splitters on the casing ahead of the stator. Computed loss buckets showed the effects of the VGs. 3. The body force model was also used to investigate the use of tiny VGs on the stator suction surface for controlling secondary flows. Near-surface particle traces and exit loss profiles were used to evaluate the effects of the VGs.


2003 ◽  
Vol 9 (7) ◽  
pp. 791-804 ◽  
Author(s):  
John Dzielski ◽  
Andrew Kurdila

At very high speeds, underwater bodies develop cavitation bubbles at the trailing edges of sharp corners or from contours where adverse pressure gradients are sufficient to induce flow separation. Coupled with a properly designed cavitator at the nose of a vehicle, this natural cavitation can be augmented with gas to induce a cavity to cover nearly the entire body of the vehicle. The formation of the cavity results in a significant reduction in drag on the vehicle and these so-called high-speed supercavitating vehicles (HSSVs) naturally operate at speeds in excess of 75 m s-1. The first part of this paper presents a derivation of a benchmark problem for control of HSSVs. The benchmark problem focuses exclusively on the pitch-plane dynamics of the body which currently appear to present the most severe challenges. A vehicle model is parametrized in terms of generic parameters of body radius, body length, and body density relative to the surrounding fluid. The forebody shape is assumed to be a right cylindrical cone and the aft two-thirds is assumed to be cylindrical. This effectively parametrizes the inertia characteristics of the body. Assuming the cavitator is a flat plate, control surface lift curves are specified relative to the cavitator effectiveness. A force model for a planing afterbody is also presented. The resulting model is generally unstable whenever in contact with the cavity and stable otherwise, provided the fin effectiveness is large enough. If it is assumed that a cavity separation sensor is not available or that the entire weight of the body is not to be carried on control surfaces, limit cycle oscillations generally result. The weight of the body inevitably forces the vehicle into contact with the cavity and the unstable mode; the body effectively skips on the cavity wall. The general motion can be characterized by switching between two nominally linear models and an external constant forcing function. Because of the extremely short duration of the cavity contact, direct suppression of the oscillations and stable planing appear to present severe challenges to the actuator designer. These challenges are investigated in the second half of the paper, along with several approaches to the design of active control systems.


Author(s):  
Milorad B. Dzodzo ◽  
Bin Liu ◽  
Pablo R. Rubiolo ◽  
Zeses E. Karoutas ◽  
Michael Y. Young

A numerical investigation was performed to study the variation in axial and lateral velocity profiles occurring downstream of the inlet nozzle of a typical Westinghouse 17×17 PWR fuel assembly. A Computational Fluid Dynamic (CFD) model was developed with commercial CFD software. The model comprised the lower region of the fuel assembly, including: the Debris Filter Bottom Nozzle (DFBN), P-grid, Bottom Inconel grid, one and half grid span, as well as the lower core plate hole. The purpose of the study was to obtain insight into the flow redistribution resulting from the interaction of the jet arising from the lower core plate hole and the fuel assembly structure. In particular the axial and lateral velocities before and after the nozzle were studied. The results, axial and lateral velocity contours, streamlines and maximum axial and lateral velocity distributions at various elevations are presented and discussed in relation to the potential risk of high turbulent excitation over the rod and the resulting rod-to-grid fretting-wear damage. The CFD model results indicated that the large jet flows from the lower core plate are effectively dissipated by DFBN nozzle and the grids components of the fuel assembly. The breakup of the large jets in the DFBN and the lower grids helps to reduce the steep velocity gradients and thus the rod vibration and fretting-wear risk in the lower part of the fuel assembly. The presented CFD model is one step towards developing advanced tools that can be used to confirm and evaluate the effect of complex PWR structures on flow distribution. In the future the presented model could be integrated in a larger CFD model involving several fuel assemblies for evaluating the lateral velocities generated due to the non-uniform inlet conditions into the various fuel assemblies.


2021 ◽  
Author(s):  
Joannes Gullaksen

Abstract The scope of this paper is to provide a method implemented in an application for assessment of dynamic response of free spanning pipelines subjected to combined wave and current loading. The premises for the paper are based on application development within pipeline free span evaluation in a software development project. A brief introduction is provided to the basic hydrodynamic phenomena, principles and parameters for dynamic response of pipeline free spans. The choice of method for static and dynamic span modelling has an influence on calculated modal frequencies and associated stresses. Due to the importance of frequencies and stresses for fatigue and environmental loading calculations, the choice of analysis approach influences the partial safety factor format. The aim of the structural analysis is to provide the necessary input to the calculations of VIV and force model response, and to provide realistic estimations of static loading from functional loads. Environmental flow conditions are implemented in the application, such as steady flow due to current, oscillatory flow due to waves and combined flow due to current and waves. Combined wave and current loading include the long-term current velocity distribution, short-term and long-term description of wave-induced flow velocity amplitude and period of oscillating flow at the pipe level and return period values. Inline and cross-flow vibrations are considered in separate response models. For pipelines and risers, modes are categorized in in-line or cross-flow direction. A force model is also considered for the short-term fatigue damage due to combined current and direct wave actions. Design criteria can be specified for ultimate limit state (ULS) and fatigue limit state (FLS) due to in-line and cross-flow vortex induced vibrations (VIV) and direct wave loading.


1971 ◽  
Vol 55 (1) ◽  
pp. 13-38 ◽  
Author(s):  
C. J. PENNYCUICK

1. Glide-comparison measurements were made on ten species of East African soaring birds using a Schleicher ASK-14 powered sailplane. Horizontal and vertical speed differences between bird and glider were measured by a photographic method, and used to estimate the bird's horizontal and vertical speeds relative to the air. The analysis refers to the white-backed vulture, since by far the largest number of measurements was obtained on this species. 2. A regression analysis using a two-term approximation to the glide polar yielded an implausibly high estimate of induced drag, which was attributed to a lack of observations at lift coefficients above 0.72. An amended glide polar was constructed assuming elliptical lift distribution and a maximum lift coefficient of 1.6 to define the low-speed end, while the high-speed end was made to pass through the mean horizontal and sinking speeds of all the experimental points. This curve gave a minimum sinking speed of 0.76 m/s at a forward speed of 10 m/s, and a best glide ratio of 15.3:1 at 13 m/s. It did not differ significantly (in the statistical sense) from the original regression curve. 3. In comparing the estimated circling performance, based on the amended glide polar, with that of the ASK-14, it was concluded that the rates of sink of both should be comparable, but that the glider would require thermals with radii about 4.3 times as great as those needed to sustain the birds. The conclusions are consistent with experience of soaring in company with birds. 4. In an attempt to assess the adaptive significance of the low-aspect-ratio wings of birds specializing in thermal soaring, the white-backed vulture's circling performance was compared with that of an ‘albatross-shaped vulture’, an imaginary creature having the same mass as a white-backed vulture, combined with the body proportions of a wandering albatross. It appears that the real white-back would be at an advantage when trying to remain airborne in thermals with radii between 14 and 17 m, but that the albatross-shaped vulture would climb faster in all wider thermals; on account of its much better maximum glide ratio, it should also achieve higher cross-country speeds. It is concluded that the wing shape seen in vultures and storks is not an adaptation to thermal soaring as such, but is more probably a compromise dictated by take-off and landing requirements. 5. The doubts recently expressed by Tucker & Parrott (1970) about the results and conclusions of Raspet (1950a, b; 1960) are re-inforced by the present experience.


1973 ◽  
Vol 24 (1) ◽  
pp. 25-33
Author(s):  
J W Craggs ◽  
K W Mangler ◽  
M Zamir

SummaryWhen the incompressible potential flow past a three-dimensional body is represented by source distributions on the body surface, these source distributions have singularities near an edge or corner, for example á trailing edge of a wing or the (unfaired) intersection of a body and a wing. The nature of these singularities is discussed. When assuming slow variations of the geometry in the main flow direction we can consider a two-dimensional problem in the cross-flow plane. Here the tangential velocities and source distributions are proportional to certain powers of the distance from the corner. For example at a convex right-angled corner these powers are − ⅓ in the asymmetric case (the bisector is a potential line) and ⅓ in the symmetric case (the bisector is a streamline) for both sources and tangential velocities. At a concave right-angled corner the corresponding values for the source distributions are ⅓ (asymmetric case) and − ⅓ (symmetric case) whereas they are 1 and 3 respectively for the tangential velocities.


Sign in / Sign up

Export Citation Format

Share Document