scholarly journals Estimating Deterioration in the Concrete Tie-Ballast Interface Based on Vertical Tie Deflection Profile: A Numerical Study

Author(s):  
Hailing Yu

In ballasted concrete tie track, the tie-ballast interface can deteriorate resulting in concrete tie bottom abrasion, ballast pulverization and/or voids in tie-ballast interfaces. Tie-ballast voids toward tie ends can lead to unfavorable center binding support conditions that can result in premature concrete tie failure and possible train derailment. Direct detection of these conditions is difficult. There is a strong interest in assessing the concrete tie-ballast interface conditions indirectly using measured vertical deflections. This paper seeks to establish a link between the vertical deflection profile of a concrete tie top surface and the tie-ballast interface condition using the finite element analysis (FEA) method. The concrete tie is modeled as a concrete matrix embedded with prestressing steel strands or wires. The configurations of two commonly used concrete ties, one with 8 prestressing strands and the other with 20 prestressing wires, are employed in this study. All models are three-dimensional and symmetric about the tie center. A damaged plasticity model that can predict onset and propagation of tensile cracks is applied to the concrete material. The steel-concrete interface is homogenized and represented with a thin layer of cohesive elements sandwiched between steel and concrete elements. Strand- or wire-specific elasto-plastic bond models developed at the Volpe Center are applied to the cohesive elements to account for the interface bonding mechanisms. FE models are developed for both original and worn concrete ties, with the latter assuming hypothetical patterns of reduced cross sections resulting from abrasive interactions with the ballast. Static analyses of pretension release in these concrete ties are conducted, and vertical deflection gradients along tie lengths are calculated and shown to correspond well with the worn cross sectional patterns for a given reinforcement type. The ballast is further modeled with Extended Drucker-Prager plasticity, and hypothetical voids are applied toward the tie ends along the concrete tie-ballast interface to simulate center binding support conditions. The distance range over which the concrete tie is supported in the center is variable and yields different center binding severity. Static simulations are completed with vertical rail seat loads applied on the concrete tie-ballast assembly. The influences of various factors on the vertical deflection profile, including tie type, vertical load magnitude, center binding severity, cross sectional material loss and prestress loss, are examined based on the FEA results. The work presented in this paper demonstrates the potential of using the vertical deflection profile of concrete tie top surfaces to assess deteriorations in the tie-ballast interface. The simulation results further help to clarify minimum technical requirements on inspection technologies that measure concrete tie vertical deflection profiles.

Author(s):  
Amirtaha Taebi ◽  
Fardin Khalili ◽  
Amirtaher Taebi

In orthopedics, the current internal fixations often use screws or intramedullary rods that obstruct bone material. In this paper, an internal implant was modelled as a hollow cylindrical sector made of a functionally graded material (FGM), which will hold bone in place with less obstruction of bone surface. Functionally graded implant was considered as an inhomogeneous composite structure, with continuously compositional variation from a ceramic at the outer diameter to a metal at the inner diameter. The buckling behavior of the implant was numerically analyzed using a finite element analysis software (ANSYS), and the structural stability of the implant was assessed. The buckling critical loads were calculated for different fixation lengths, cross sectional areas, and different sector angles. These critical loads were then compared with the critical loads of an FGM hollow cylinder with the same cross sectional area. Results showed that the critical load of the hollow cylindrical sector was ∼ 63%, ∼ 70%, and ∼ 73% of the hollow cylinder for different fixation lengths, cross sectional areas, and sector angles, respectively. Further investigations are warranted to study the relation between the composition profile and the implant stability, which can lead to batter internal fixation solutions.


Inventions ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 9
Author(s):  
Chiemela Victor Amaechi ◽  
Emmanuel Folarin Adefuye ◽  
Abiodun Kolawole Oyetunji ◽  
Idris Ahmed Ja’e ◽  
Ibitoye Adelusi ◽  
...  

Tubular pipe structures have been used in various applications—domestic, aviation, marine, manufacturing and material testing. The applications of tubular pipes have been considered greatly in the installation of tubular pipes, marine risers and pipe bending. For the investigation of plastic strains and the mechanical behaviour of a tube under bending, considerations were made utilising an exponent model with assumptions on the plane strain. The bending moment, wall thickness effect, cross-sectional distribution, stresses during bending and neutral layer boundaries were all presented as necessary theoretical formulations on the physics of tubular pipe bending. This model was based on the analytical and numerical investigation. In principle, the application can be observed as the spooling of pipes, bending of pipes and reeling. Comparisons were made on two models developed on the finite element analysis in Simscale OpenFEA, namely the linear-elastic and the elasto-plastic models. This study presents visualization profiles using plastic strain to assess its effect on the tubular pipes. This can increase due to the limitation of plastic deformation on the composite materials selected.


2010 ◽  
Vol 636-637 ◽  
pp. 233-238 ◽  
Author(s):  
Raul D.S.G. Campilho ◽  
Marcelo F.S.F. de Moura ◽  
A.M.G. Pinto ◽  
Dimitra A. Ramantani ◽  
J.J.L. Morais ◽  
...  

This work reports on the experimental and numerical study of the bending behaviour of two-dimensional adhesively-bonded scarf repairs of carbon-epoxy laminates, bonded with the ductile adhesive Araldite 2015®. Scarf angles varying from 2 to 45º were tested. The experimental work performed was used to validate a numerical Finite Element analysis using ABAQUS® and a methodology developed by the authors to predict the strength of bonded assemblies. This methodology consists on replacing the adhesive layer by cohesive elements, including mixed-mode criteria to deal with the mixed-mode behaviour usually observed in structures. Trapezoidal laws in pure modes I and II were used to account for the ductility of the adhesive used. The cohesive laws in pure modes I and II were determined with Double Cantilever Beam and End-Notched Flexure tests, respectively, using an inverse method. Since in the experiments interlaminar and transverse intralaminar failures of the carbon-epoxy components also occurred in some regions, cohesive laws to simulate these failure modes were also obtained experimentally with a similar procedure. A good correlation with the experiments was found on the elastic stiffness, maximum load and failure mode of the repairs, showing that this methodology simulates accurately the mechanical behaviour of bonded assemblies.


2011 ◽  
Vol 264-265 ◽  
pp. 694-699 ◽  
Author(s):  
P.D. Pachpor ◽  
N.D. Mittal ◽  
L.M. Gupta ◽  
N.V. Deshpande

The solid I section beam with creating hexagonal cavities (openings) has numerous advantages over conventional rolled sections. As they are light weight, strong, cheap and elegant. The opening in the web simplifies the work of the installer and the electrician, since taking pipes across beams presents no problems. A cellular beam (circular openings) is the modern version of the traditional castellated beam. The beam comprises pronouncedly asymmetric cellular tees, to provide a wide bearing for either pre-cast units or a profiled metal deck. The elastic finite element analysis of castellated beam and cellular beam is carried out to understand its behaviour under load. The failure pattern and stresses developed under same loading condition are studied. Based on the various modes of failure, the applicable methods of analysis are studied which includes plastic analysis, mid post yielding and buckling analysis. From the previous experimental results, one beam is selected and analyzed. Then the no of openings is varied as 2, 4 and 6 in selected beam. The shape of opening is considered as hexagonal and circular of same cross sectional area. The support conditions are considered as fixed, hinged and roller. Overall 18 cases are studied for same central point load and span with change of spacing of openings. The maximum Deflection and the maximum VonMises stress are worked out. The comparative study is carried out using software for finite element analysis ANSYS.


2021 ◽  
Vol 11 (8) ◽  
pp. 3404
Author(s):  
Majid Hejazian ◽  
Eugeniu Balaur ◽  
Brian Abbey

Microfluidic devices which integrate both rapid mixing and liquid jetting for sample delivery are an emerging solution for studying molecular dynamics via X-ray diffraction. Here we use finite element modelling to investigate the efficiency and time-resolution achievable using microfluidic mixers within the parameter range required for producing stable liquid jets. Three-dimensional simulations, validated by experimental data, are used to determine the velocity and concentration distribution within these devices. The results show that by adopting a serpentine geometry, it is possible to induce chaotic mixing, which effectively reduces the time required to achieve a homogeneous mixture for sample delivery. Further, we investigate the effect of flow rate and the mixer microchannel size on the mixing efficiency and minimum time required for complete mixing of the two solutions whilst maintaining a stable jet. In general, we find that the smaller the cross-sectional area of the mixer microchannel, the shorter the time needed to achieve homogeneous mixing for a given flow rate. The results of these simulations will form the basis for optimised designs enabling the study of molecular dynamics occurring on millisecond timescales using integrated mix-and-inject microfluidic devices.


2020 ◽  
pp. 136943322098170
Author(s):  
Michele Fabio Granata ◽  
Antonino Recupero

In concrete box girders, the amount and distribution of reinforcements in the webs have to be estimated considering the local effects due to eccentric external loads and cross-sectional distortion and not only the global effect due to the resultant forces of a longitudinal analysis: shear, torsion and bending. This work presents an analytical model that allows designers to take into account the interaction of all these effects, global and local, for the determination of the reinforcements. The model is based on the theory of stress fields and it has been compared to a 3D finite element analysis, in order to validate the interaction domains. The results show how the proposed analytical model allows an easy and reliable reinforcement evaluation, in agreement with a more refined 3D analysis but with a reduced computational burden.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Arun Prasad R ◽  
Thanigaiarasu S ◽  
Sembaruthi M ◽  
Rathakrishnan E

AbstractThe present numerical study is to understand the effect of air tabs located at the exit of a convergent nozzle on the spreading and mixing characteristics of correctly expanded sonic primary jet. Air tabs used in this study are two secondary jets issuing from constant diameter tubes located diametrically opposite at the periphery of the primary nozzle exit, normal to the primary jet. Two air tabs of Mach numbers 1.0 to 1.4, in steps of 0.1 are considered in this study. The mixing modification caused by air tabs are analysed by considering the mixing of uncontrolled (free) primary jet as a reference. Substantial enhancement in jet mixing is achieved with Mach 1.4 air tabs, which results in 80 % potential core length reduction. The total pressure profiles taken on the plane (YZ) normal to the primary jet axis, at various locations along the primary jet centreline revealed the modification of the jet cross sectional shape by air tabs. The stream-wise vortices and bifurcation of the primary jet caused by air tabs are found to be the mechanism behind the enhanced jet mixing.


2021 ◽  
pp. 136943322110015
Author(s):  
Rana Al-Dujele ◽  
Katherine Ann Cashell

This paper is concerned with the behaviour of concrete-filled tubular flange girders (CFTFGs) under the combination of bending and tensile axial force. CFTFG is a relatively new structural solution comprising a steel beam in which the compression flange plate is replaced with a concrete-filled hollow section to create an efficient and effective load-carrying solution. These members have very high torsional stiffness and lateral torsional buckling strength in comparison with conventional steel I-girders of similar depth, width and steel weight and are there-fore capable of carrying very heavy loads over long spans. Current design codes do not explicitly include guidance for the design of these members, which are asymmetric in nature under the combined effects of tension and bending. The current paper presents a numerical study into the behaviour of CFTFGs under the combined effects of positive bending and axial tension. The study includes different loading combinations and the associated failure modes are identified and discussed. To facilitate this study, a finite element (FE) model is developed using the ABAQUS software which is capable of capturing both the geometric and material nonlinearities of the behaviour. Based on the results of finite element analysis, the moment–axial force interaction relationship is presented and a simplified equation is proposed for the design of CFTFGs under combined bending and tensile axial force.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 162
Author(s):  
A.A. Jameei ◽  
S. Pietruszczak

This paper provides a mathematical description of hydromechanical coupling associated with propagation of localized damage. The framework incorporates an embedded discontinuity approach and addresses the assessment of both hydraulic and mechanical properties in the region intercepted by a fracture. Within this approach, an internal length scale parameter is explicitly employed in the definition of equivalent permeability as well as the tangential stiffness operators. The effect of the progressive evolution of damage on the hydro-mechanical coupling is examined and an evolution law is derived governing the variation of equivalent permeability with the continuing deformation. The framework is verified by a numerical study involving 3D simulation of an axial splitting test carried out on a saturated sample under displacement and fluid pressure-controlled conditions. The finite element analysis incorporates the Polynomial-Pressure-Projection (PPP) stabilization technique and a fully implicit time integration scheme.


Sign in / Sign up

Export Citation Format

Share Document