Wheel Wear Management on High-Speed Passenger Rail: A Common Playground for Design and Maintenance Engineering in the Talgo Engineering Cycle

Joint Rail ◽  
2004 ◽  
Author(s):  
Fernando Pascual ◽  
Jose-Antonio Marcos

Talgo’s focus on engineering excellence has helped the group to deliver innovative rail products to the market since 1942. Patentes Talgo S.A. (PTSA) provides passenger rail administrations around the world with high speed cars and locomotives, car maintenance equipment and maintenance services. The paper outlines the US experience of Talgo’s Total Logistics Care (TLC) maintenance program, summarizing Talgo’s maintenance approach, practice and overall results. The preventive and corrective maintenance program, the continuous trainset monitoring and the maintenance & design engineering cycle will be covered among other topics. Rolling assembly maintenance and wheel wear management are the two focal points of this paper. Talgo’s rolling assembly design has evolved over 60 years taking full advantage of the design-maintenance engineering cycle. Maintenance engineers and technicians, wheel assembly design engineers and maintenance equipment design engineers work together on a daily basis to improve the design of the rolling assembly and reduce maintenance costs and wheel wear. Enhanced guidance systems and other design improvements help to reduce flange wear on independent axle wheelsets. Also, five decades of in-house maintenance and wheel turning experience using Talgo pit lathes revealed the cutting parameters and frequencies to maximize wheel life. Both wheel wear management design and maintenance practices will be reviewed in the paper.

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4143
Author(s):  
Youzheng Cui ◽  
Shenrou Gao ◽  
Fengjuan Wang ◽  
Qingming Hu ◽  
Cheng Xu ◽  
...  

Compared with other materials, high-volume fraction aluminum-based silicon carbide composites (hereinafter referred to as SiCp/Al) have many advantages, including high strength, small change in the expansion coefficient due to temperature, high wear resistance, high corrosion resistance, high fatigue resistance, low density, good dimensional stability, and thermal conductivity. SiCp/Al composites have been widely used in aerospace, ordnance, transportation service, precision instruments, and in many other fields. In this study, the ABAQUS/explicit large-scale finite element analysis platform was used to simulate the milling process of SiCp/Al composites. By changing the parameters of the tool angle, milling depth, and milling speed, the influence of these parameters on the cutting force, cutting temperature, cutting stress, and cutting chips was studied. Optimization of the parameters was based on the above change rules to obtain the best processing combination of parameters. Then, the causes of surface machining defects, such as deep pits, shallow pits, and bulges, were simulated and discussed. Finally, the best cutting parameters obtained through simulation analysis was the tool rake angle γ0 = 5°, tool clearance angle α0 = 5°, corner radius r = 0.4 mm, milling depth ap = 50 mm, and milling speed vc= 300 m/min. The optimal combination of milling parameters provides a theoretical basis for subsequent cutting.


2011 ◽  
Vol 287-290 ◽  
pp. 104-107
Author(s):  
Lian Qing Ji ◽  
Kun Liu

The history and application of the FEA are briefly presented in this paper. Several key technologies such as the building of material model, the establishment of the chip - tool friction model as well as meshing are described. Taking the high-speed cutting of titanium alloy (Ti - 10V - 2Fe - 3Al) as an example , reasonable cutting tools and cutting parameters are determinted by simulating the influences of cutting speed, cutting depth and feeding rate on the cutting parameters using FEA.


2014 ◽  
Vol 989-994 ◽  
pp. 3331-3334
Author(s):  
Tao Zhang ◽  
Guo He Li ◽  
L. Han

High speed milling is a newly developed advanced manufacturing technology. Surface integrity is an important object of machined parts. Surface roughness is mostly used to evaluate to the surface integrity. A theoretical surface roughness model for high face milling was established. The influence of cutting parameters on the surface roughness is analyzed. The surface roughness decreases when the cutter radius increases, total number of tooth and rotation angular speed, while it increases with the feeding velocity. The high speed face milling can get a smooth surface and it can replace the grinding with higher efficiency.


2013 ◽  
Vol 834-836 ◽  
pp. 861-865 ◽  
Author(s):  
Yong Shou Liang ◽  
Jun Xue Ren ◽  
Yuan Feng Luo ◽  
Ding Hua Zhang

An experimental study was conducted to determine cutting parameters of high-speed milling of Ti-17 according to their effects on residual stresses. First, three groups of single factor experiments were carried out to reveal the effects of cutting parameters on residual stresses. Then sensitivity models were established to evaluate the influence degrees of cutting parameters on residual stresses. After that, three criteria were proposed to determine cutting parameters from experimental parameter ranges. In the experiments, the cutting parameter ranges are recommended as [371.8, 406.8] m/min, [0.363, 0.412] mm and [0, 0.018] mm/z for cutting speed, cutting depth and feed per tooth, respectively.


2016 ◽  
Vol 78 (6-9) ◽  
Author(s):  
Mohd Shahfizal Ruslan ◽  
Kamal Othman ◽  
Jaharah A.Ghani ◽  
Mohd Shahir Kassim ◽  
Che Hassan Che Haron

Magnesium alloy is a material with a high strength to weight ratio and is suitable for various applications such as in automotive, aerospace, electronics, industrial, biomedical and sports. Most end products require a mirror-like finish, therefore, this paper will present how a mirror-like finishing can be achieved using a high speed face milling that is equivalent to the manual polishing process. The high speed cutting regime for magnesium alloy was studied at the range of 900-1400 m/min, and the feed rate for finishing at 0.03-0.09 mm/tooth. The surface roughness found for this range of cutting parameters were between 0.061-0.133 µm, which is less than the 0.5µm that can be obtained by manual polishing. Furthermore, from the S/N ratio plots, the optimum cutting condition for the surface roughness can be achieved at a cutting speed of 1100 m/min, feed rate 0.03 mm/tooth, axial depth of cut of 0.20 mm and radial depth of cut of 10 mm. From the experimental result the lowest surface roughness of 0.061µm was obtained at 900 m/min with the same conditions for other cutting parameters. This study revealed that by milling AZ91D at a high speed cutting, it is possible to eliminate the polishing process to achieve a mirror-like finishing.


Author(s):  
John Tunna ◽  
Jingjun Zhang ◽  
Adrian Gorski

The Passenger Rail Investment and Improvement Act (PRIIA) Section 305 Next Generation Equipment Committee’s specification for diesel-electric locomotives has several challenging requirements. Among these is limiting P2 Force to 82,000 pound force (lbf) at 125 miles per hour (mph). To achieve this, the locomotive designer would have to balance unsprung mass and axle load. A design envelope exists within which that balance can be achieved. Advanced designs of traction and braking systems are required, and attention has to be paid to minimizing the overall mass of the locomotive.


2011 ◽  
Vol 9 (4) ◽  
pp. 647-652 ◽  
Author(s):  
Soad A. Abdallah ◽  
Ahmed I. Khalil

Microorganisms that have been identified in dental unit waterlines (DUWLs) are of concern because they can cause infections, especially in immunocompromised patients. This study aimed to assess the incidence of microbial contamination in DUWLs before and after intervention to reduce contamination, and to investigate the presence of coliforms, Escherichia coli and Pseudomonas aeruginosa. Water samples were collected aseptically from the waterlines. The high-speed hand-piece and dental chair units were served by one distillation apparatus, which was fed by the potable tap water of four dental clinics. Different interventions were used: chlorination, flushing before clinics and between patients, draining at the end of the day, and freshly distilled water on a daily basis. There was a significant difference between the level of contamination in the high-speed hand-piece (1.5–2.7 log CFU/ml) and dental chair unit water (2.0–3.5 log CFU/ml). Coliforms (0.9%) E. coli (0.9%) and Pseudomonas (1.8%) were detected during 2008. This study indicates the need to monitor water quality regularly and prevent stagnation in DUWLs to reduce the number of viable bacteria to <100 CFU/ml. We recommend flushing the DUWL for 2 min before the first patient and for 10–20 s between patients, flushing the dental unit at the end of the day and draining it overnight to reduce the development of biofilms, and chlorination of the DUWLs.


2009 ◽  
Vol 69-70 ◽  
pp. 301-305
Author(s):  
Jing Shu Hu ◽  
Yuan Sheng Zhai ◽  
Fu Gang Yan ◽  
Yu Fu Li ◽  
Xian Li Liu

In the cutting process, cutting force is one of the important physical parameters, which affects the generation of cutting heat, tool life and surface precision of workpiece directly. In this paper an orthogonal design of experiment and subsequent data is analyzed using high speed finish hard cutting GCr15 whose hardness is 65HRC. Cutting speed is 200-400m/min, to study the influence of cutting parameters on cutting force, cutting force empirical model has obtained from least square method.


Sign in / Sign up

Export Citation Format

Share Document