Modeling the Matrix of Articular Cartilage Using a Continuous Fiber Angular Distribution Predicts Many Observed Phenomena

Author(s):  
Gerard A. Ateshian ◽  
Vikram Rajan ◽  
Nadeen O. Chahine ◽  
Clare Canal Guterl ◽  
Clark T. Hung

A number of theoretical frameworks embodying the disparity between tensile and compressive properties of cartilage have been proposed, accounting for the collagen fibers implicitly [1,2] or explicitly [3–5]. These models generally propose discrete fiber families to describe the collagen matrix. They are able to capture the most salient features of the cartilage mechanical response, namely, the tension-compression nonlinearity of the stress-strain curve [6].

2013 ◽  
Vol 456 ◽  
pp. 529-532
Author(s):  
Peng Li ◽  
Zhong Ji ◽  
Ren Liu

The compressive properties of mineral composite material (MCM) are simulated by finite element (FE) method. A meso-scale 2D FE model for MCM specimen was established based on the real shapes of aggregates and their distributions in the matrix. Quasi-static compressive load was then exerted on the model, supposing no debonding exists between the matrix and aggregates and no failure occurs on their interfaces. Comparing the simulation with experimental results, it is found that the simulated stress-strain curve agrees well with the experimental one. It proved that the way for simulating compressive properties of MCM in this paper is very effective.


2018 ◽  
Vol 281 ◽  
pp. 375-381
Author(s):  
Hai Peng Qiu ◽  
Shan Hua Liu ◽  
Ling Wang ◽  
Bing Yu Zhang ◽  
Ming Wei Chen ◽  
...  

A two dimensional silicon carbide fiber reinforced SiC matrix (2D SiC/SiC) composite fabricated by precursor infiltration pyrolysis (PIP) process used a liquid SiC ceramic precursor was obtained. Two key properties including matrix cracking stress and thermal residual stress were investigated for this PIP 2D SiC/SiC composites. Three methods were applied to determine the matrix cracking stress in order to obtained a trusted value, and the value of matrix cracking stress for SiC/SiC composite was 75±4 MPa. The thermal residual stress of the composites was calculated by linear regression line according to the loading-unloading-reloading stress-strain curve of the 2D SiC/SiC composite, and the result showed that the value of thermal residual stress of SiC matrix in composite was 20MPa, which means the PIP SiC matrix in the 2D SiC/SiC composite was under the compressive stress when the composite cooling down from the fabrication temperature to the room temperature.


1997 ◽  
Vol 119 (2) ◽  
pp. 81-84 ◽  
Author(s):  
A. Gilat ◽  
K. Krishna

A new configuration for testing thin layers of solder is introduced and employed to study the effects of strain rate and thickness on the mechanical response of eutectic Sn-Pb solder. The solder in the test is loaded under a well defined state of pure shear stress. The stress and deformation in the solder are measured very accurately to produce a reliable stress-strain curve. The results show that both the stress needed for plastic deformation and ductility increase with increasing strain rate.


2016 ◽  
Vol 31 (2) ◽  
pp. 145-161 ◽  
Author(s):  
Gihune Jung ◽  
Peter Mitschang

A new manufacturing concept named multilayered hybrid (MLH) roving was invented in the form of a fiber roving separated evenly into several sublayers by thermoplastic films, which is manufactured by the sequential processes of spreading, fixing, and folding. This concept is aimed to combine the variety in processing of commingled roving and the variety in material configuration of organic sheet. For the review on impregnation basics, the Kozeny–Carman equation was examined on the packed bed of fibers, not of particles, to check out the controllable parameter. Also, the newly derived spreading equation was prepared to prevent the current problem of center splitting during fiber spreading processes. The impregnation quality was practically verified by the bending test on the unbalanced (2/1) woven fabric made of polypropylene (PP) and glass fiber (GF) MLH roving, PP/GF45 vol.% (70 wt%), which had been impregnated by the continuous compression molding machine considering the conditions of mass production. The representative flexural properties were statistically determined with the characteristic behavior of stress–strain curve. The coefficient-of-variation values were in the moderate range of around 5%, except for the strength and strain in minor direction that can be explained by the waving of fibers due to the lack of applied tension during and before impregnation.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Gerard A. Ateshian ◽  
Vikram Rajan ◽  
Nadeen O. Chahine ◽  
Clare E. Canal ◽  
Clark T. Hung

Cartilage is a hydrated soft tissue whose solid matrix consists of negatively charged proteoglycans enmeshed within a fibrillar collagen network. Though many aspects of cartilage mechanics are well understood today, most notably in the context of porous media mechanics, there remain a number of responses observed experimentally whose prediction from theory has been challenging. In this study the solid matrix of cartilage is modeled with a continuous fiber angular distribution, where fibers can only sustain tension, swelled by the osmotic pressure of a proteoglycan ground matrix. It is shown that this representation of cartilage can predict a number of observed phenomena in relation to the tissue’s equilibrium response to mechanical and osmotic loading, when flow-dependent and flow-independent viscoelastic effects have subsided. In particular, this model can predict the transition of Poisson’s ratio from very low values in compression (∼0.02) to very high values in tension (∼2.0). Most of these phenomena cannot be explained when using only three orthogonal fiber bundles to describe the tissue matrix, a common modeling assumption used to date. The main picture emerging from this analysis is that the anisotropy of the fibrillar matrix of articular cartilage is intimately dependent on the mechanism of tensed fiber recruitment, in the manner suggested by our recent theoretical study (Ateshian, 2007, ASME J. Biomech. Eng., 129(2), pp. 240–249).


2010 ◽  
Vol 152-153 ◽  
pp. 164-170
Author(s):  
Jie Liu ◽  
Jian Lin Li ◽  
Ying Xia Li ◽  
Shan Shan Yang ◽  
Ji Fang Zhou ◽  
...  

Specific to the improvement in the present research of mechanical response under cyclic loading, this paper, taking the calcareous middle- coarse sandstone as the research subject and the RMT-150C experimental system in which data is recoded by ms magnitude as the platform, develops several related models concerning the unloading rate of triangle waves. The unloading process is divided into lag time segment and non-lag time segment, with criterions and related parameters provided as well. The term apparent elastic modulus is defined. The test data analysis shows that there exist a linear relationship between the apparent modulus and instant vertical force before load damage in non-lag time segment. On the preceding basis, a rate-dependent model of triangular wave un-installation section in non-lag time segment is established. Due to the inability of the loading equipment to accurately input the triangle wave, the average loading rate is amended and a constant term is added into it. The model is proved to be reliable, as the predicted value of the deformation rate and the stress strain curve coincides with measured value. At the same time, the impact of the lag time is pointed out quantitatively and a predication model of lag time segment is set up.


SIMULATION ◽  
2021 ◽  
pp. 003754972110315
Author(s):  
B Girinath ◽  
N Siva Shanmugam

The present study deals with the extended version of our previous research work. In this article, for predicting the entire weld bead geometry and engineering stress–strain curve of the cold metal transfer (CMT) weldment, a MATLAB based application window (second version) is developed with certain modifications. In the first version, for predicting the entire weld bead geometry, apart from weld bead characteristics, x and y coordinates (24 from each) of the extracted points are considered. Finally, in the first version, 53 output values (five for weld bead characteristics and 48 for x and y coordinates) are predicted using both multiple regression analysis (MRA) and adaptive neuro fuzzy inference system (ANFIS) technique to get an idea related to the complete weld bead geometry without performing the actual welding process. The obtained weld bead shapes using both the techniques are compared with the experimentally obtained bead shapes. Based on the results obtained from the first version and the knowledge acquired from literature, the complete shape of weld bead obtained using ANFIS is in good agreement with the experimentally obtained weld bead shape. This motivated us to adopt a hybrid technique known as ANFIS (combined artificial neural network and fuzzy features) alone in this paper for predicting the weld bead shape and engineering stress–strain curve of the welded joint. In the present study, an attempt is made to evaluate the accuracy of the prediction when the number of trials is reduced to half and increasing the number of data points from the macrograph to twice. Complete weld bead geometry and the engineering stress–strain curves were predicted against the input welding parameters (welding current and welding speed), fed by the user in the MATLAB application window. Finally, the entire weld bead geometries were predicted by both the first and the second version are compared and validated with the experimentally obtained weld bead shapes. The similar procedure was followed for predicting the engineering stress–strain curve to compare with experimental outcomes.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1257
Author(s):  
Shuling Gao ◽  
Guanhua Hu

An improved hydraulic servo structure testing machine has been used to conduct biaxial dynamic compression tests on eight types of engineered cementitious composites (ECC) with lateral pressure levels of 0, 0.125, 0.25, 0.5, 0.7, 0.8, 0.9, 1.0 (the ratio of the compressive strength applied laterally to the static compressive strength of the specimen), and three strain rates of 10−4, 10−3 and 10−2 s−1. The failure mode, peak stress, peak strain, deformation modulus, stress-strain curve, and compressive toughness index of ECC under biaxial dynamic compressive stress state are obtained. The test results show that the lateral pressure affects the direction of ECC cracking, while the strain rate has little effect on the failure morphology of ECC. The growth of lateral pressure level and strain rate upgrades the limit failure strength and peak strain of ECC, and the small improvement is achieved in elastic modulus. A two-stage ECC biaxial failure strength standard was established, and the influence of the lateral pressure level and peak strain was quantitatively evaluated through the fitting curve of the peak stress, peak strain, and deformation modulus of ECC under various strain rates and lateral pressure levels. ECC’s compressive stress-strain curve can be divided into four stages, and a normalized biaxial dynamic ECC constitutive relationship is established. The toughness index of ECC can be increased with the increase of lateral pressure level, while the increase of strain rate can reduce the toughness index of ECC. Under the effect of biaxial dynamic load, the ultimate strength of ECC is increased higher than that of plain concrete.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
B. Buchmann ◽  
L. K. Engelbrecht ◽  
P. Fernandez ◽  
F. P. Hutterer ◽  
M. K. Raich ◽  
...  

AbstractEpithelial branch elongation is a central developmental process during branching morphogenesis in diverse organs. This fundamental growth process into large arborized epithelial networks is accompanied by structural reorganization of the surrounding extracellular matrix (ECM), well beyond its mechanical linear response regime. Here, we report that epithelial ductal elongation within human mammary organoid branches relies on the non-linear and plastic mechanical response of the surrounding collagen. Specifically, we demonstrate that collective back-and-forth motion of cells within the branches generates tension that is strong enough to induce a plastic reorganization of the surrounding collagen network which results in the formation of mechanically stable collagen cages. Such matrix encasing in turn directs further tension generation, branch outgrowth and plastic deformation of the matrix. The identified mechanical tension equilibrium sets a framework to understand how mechanical cues can direct ductal branch elongation.


Sign in / Sign up

Export Citation Format

Share Document