Three Dimensional Fluoroscan is More Accurate and Repeatable Than Two Dimensional Fluoroscan for Measuring Central Scaphoid Screw Placement in a Cadaver Model

Author(s):  
Hyun Kyu Han ◽  
W. Scott Green ◽  
Jenni M. Buckley ◽  
Lisa L. Lattanza

A commonly accepted treatment method for scaphoid fractures is dorsal percutaneous fixation [1, 2]. This has been shown to decrease the need for cast immobilization and allow faster recovery [3, 4]. For this approach a central screw placement is critical as it provides greater stiffness and load to failure, and allows a longer screw to be inserted which increases screw compression. All of these factors aid in fracture union [5]. However, the complex shape of the scaphoid bone makes central screw placement difficult, as the main axis cannot be easily visualized. Currently, scaphoid screws are placed using K wires guided under 2D fluoroscopy; however, intra-operative 3D fluoroscopy, which can create a CT reconstruction, is becoming more readily available. The goals of this study are to see if there is a significant difference between 2D and 3D fluoroscopic imaging in measuring screw malpositioning (distance off-center) and if there is a difference in repeatability.

2010 ◽  
Vol 13 (5) ◽  
pp. 606-611 ◽  
Author(s):  
Yoshimoto Ishikawa ◽  
Tokumi Kanemura ◽  
Go Yoshida ◽  
Zenya Ito ◽  
Akio Muramoto ◽  
...  

Object The authors performed a retrospective clinical study to evaluate the feasibility and accuracy of cervical pedicle screw (CPS) placement using 3D fluoroscopy-based navigation (3D FN). Methods The study involved 62 consecutive patients undergoing posterior stabilization of the cervical spine between 2003 and 2008. Thirty patients (126 screws) were treated using conventional techniques (CVTs) with a lateral fluoroscopic view, whereas 32 patients (150 screws) were treated using 3D FN. Screw positions were classified into 4 grades based on the pedicle wall perforations observed on postoperative CT. Results The prevalence of perforations in the CVT group was 27% (34 screws): 92 (73.0%), 12 (9.5%), 6 (4.8%), and 16 (12.7%) for Grade 0 (no perforation), Grade 1 (perforation < 1 mm), Grade 2 (perforation ≥ 1 and < 2 mm), and Grade 3 (perforation ≥ 2 mm), respectively. In the 3D FN group, the prevalence of perforations was 18.7% (28 screws): 122 (81.3%), 17 (11.3%), 6 (4%), and 5 (3.3%) for Grades 0, 1, 2, and 3, respectively. Statistical analysis showed no significant difference in the prevalence of Grade 1 or higher perforations between the CVT and 3D FN groups. A higher prevalence of malpositioned CPSs was seen in Grade 2 or higher (17.5% vs 7.3%, p < 0.05) in the 3D FN group and Grade 3 (12.7% vs 7.3%, p < 0.05) perforations in the CVT group. The ORs for CPS malpositioning in the CVT group were 2.72 (95% CI 1.16–6.39) in Grade 2 or higher perforations and 3.89 (95% CI 1.26–12.02) in Grade 3 perforations. Conclusions Three-dimensional fluoroscopy-based navigation can improve the accuracy of CPS insertion; however, severe CPS malpositioning that causes injury to the vertebral artery or neurological complications can occur even with 3D FN. Advanced techniques for the insertion of CPSs and the use of modified insertion devices can reduce the risk of a malpositioned CPS and provide increased safety.


2020 ◽  
Author(s):  
Chao Xu ◽  
Qingxian Hou ◽  
Yanchen Chu ◽  
Xiuling Huang ◽  
Wenjiu Yang ◽  
...  

Abstract Background: Through the comparison of three-dimensional CT reconstruction between the supine position and the prone position, the relative position of thoracolumbar great vessels and vertebral body was studied, and the shortest safe distance between them was measured to improve the safety of bicortical pedicle screw insertion and reduce the risk of vascular injury. Methods: Forty adults were selected to participate the research. Three-dimensional reconstruction of thoracolumbar (T9-L3) CT was performed in the prone position and the supine position. The relative distance between the Aorta/Inferior Vena Cava (IVC) and vertebral body was obtained as AVD/VVD respectively. The relative angle of the Aorta/ IVC and the vertebral body was calculated as ∠AOY/∠VOY. Self-controlled experiments were carried out in the prone and the supine positions, and the data obtained were analyzed using SPSS 22.0 statistical software. Results: The AVD of the prone position and the supine position was the shortest at T12 (3.18 ±0.68mm), but the difference was not statistically significant. The aorta of the T9-L3 segment was shifted from the anterolateral to the anteromedial. The ∠AOY of the other groups differed significantly between the prone and supine positions in all vertebrae except L1 (P < 0.05), and the aorta in the prone position was more anteromedial than that of supine position. With regard to VVD/∠VOY, there was no significant difference between the prone and supine positions (P≥0.05), and the minimum VVD of L3 segment is greater than 5.4mm. The IVC has no obvious mobility and is fixed in the range of 20 °~ 30 ° near the midline. Conclusion: When using bicortical anchoring of pedicle screws, it is safe to ensure that the protruding tips of the screw is less than 3mm. Due to the mobility of the aorta in different postures and individual differences in anatomy, the prone position CT can help doctors to make better preoperative plans and decisions.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Yan Yu ◽  
Haiqing Mao ◽  
Jing-Sheng Li ◽  
Tsung-Yuan Tsai ◽  
Liming Cheng ◽  
...  

While abnormal loading is widely believed to cause cervical spine disc diseases, in vivo cervical disc deformation during dynamic neck motion has not been well delineated. This study investigated the range of cervical disc deformation during an in vivo functional flexion–extension of the neck. Ten asymptomatic human subjects were tested using a combined dual fluoroscopic imaging system (DFIS) and magnetic resonance imaging (MRI)-based three-dimensional (3D) modeling technique. Overall disc deformation was determined using the changes of the space geometry between upper and lower endplates of each intervertebral segment (C3/4, C4/5, C5/6, and C6/7). Five points (anterior, center, posterior, left, and right) of each disc were analyzed to examine the disc deformation distributions. The data indicated that between the functional maximum flexion and extension of the neck, the anterior points of the discs experienced large changes of distraction/compression deformation and shear deformation. The higher level discs experienced higher ranges of disc deformation. No significant difference was found in deformation ranges at posterior points of all the discs. The data indicated that the range of disc deformation is disc level dependent and the anterior region experienced larger changes of deformation than the center and posterior regions, except for the C6/7 disc. The data obtained from this study could serve as baseline knowledge for the understanding of the cervical spine disc biomechanics and for investigation of the biomechanical etiology of disc diseases. These data could also provide insights for development of motion preservation surgeries for cervical spine.


2020 ◽  
pp. 219256822094417
Author(s):  
Cesar D. Lopez ◽  
Venkat Boddapati ◽  
Nathan J. Lee ◽  
Marc D. Dyrszka ◽  
Zeeshan M. Sardar ◽  
...  

Study Design: Systematic review. Objectives: This current systematic review seeks to identify current applications and surgical outcomes for 3-dimensional printing (3DP) in the treatment of adult spinal deformity. Methods: A comprehensive search of publications was conducted through literature databases using relevant keywords. Inclusion criteria consisted of original studies, studies with patients with adult spinal deformities, and studies focusing on the feasibility and/or utility of 3DP technologies in the planning or treatment of scoliosis and other spinal deformities. Exclusion criteria included studies with patients without adult spinal deformity, animal subjects, pediatric patients, reviews, and editorials. Results: Studies evaluating the effect of 3DP drill guide templates found higher screw placement accuracy in the 3DP cohort (96.9%), compared with non-3DP cohorts (81.5%, P < .001). Operative duration was significant decreased in 3DP cases (378 patients, 258 minutes) relative to non-3DP cases (301 patients,272 minutes, P < .05). The average deformity correction rate was 72.5% in 3DP cases (245 patients). There was no significant difference in perioperative blood loss between 3DP (924.6 mL, 252 patients) and non-3DP cases (935.6 mL, 177 patients, P = .058). Conclusions: Three-dimensional printing is currently used for presurgical planning, patient and trainee communication and education, pre- and intraoperative guides, and screw drill guides in the treatment of scoliosis and other adult spinal deformities. In adult spinal deformity, the usage of 3DP guides is associated with increased screw accuracy and favorable deformity correction outcomes; however, average costs and production lead time are highly variable between studies.


CJEM ◽  
2014 ◽  
Vol 16 (04) ◽  
pp. 296-303 ◽  
Author(s):  
Christina Hiscox ◽  
Jeremy LaMothe ◽  
Neil White ◽  
Mark Bromley ◽  
Elizabeth Oddone Paolucci ◽  
...  

ABSTRACT Background: Many patients with suspected scaphoid fractures but negative radiographs are immobilized for ≥ 2 weeks and are eventually found to have no fracture. Bone scans are reportedly 99% sensitive for these injuries if done ≥ 72 hours postinjury. Objective: The purpose of this study was to determine if early bone scans would allow for shorter cast immobilization periods in patients with suspected scaphoid fractures. Methods: Twenty-seven patients with clinically suspected scaphoid fractures and negative radiographs were randomized to early diagnosis (bone scan within 3–5 days; n 5 12) or traditional diagnosis (radiographs 10–14 days postinjury; n 5 15). The primary outcome was number of days immobilized in a cast. Results: The mean number of days immobilized was 26 in the traditional group and 29 in the bone scan group. Overall, 6 patients had scaphoid fractures (2 in the traditional diagnosis group and 4 in the bone scan group; p &gt; 0.05), and 8 had other types of fractures. These other types of fractures included four distal radius fractures, two triquetral fractures, one trapezoid fracture, and one hamate fracture. There was no significant difference in the number of other types of fractures between groups. The Kaplan-Meier survival analysis using the log-rank test revealed that there was no statistically significant difference between days immobilized between the radiograph and bone scan groups (p 5 0.38). Conclusions: The current study suggests that the use of bone scans to help diagnose occult scaphoid fractures does not reduce the number of days immobilized and that the differential diagnosis of occult scaphoid fractures should remain broad because other injuries are common.


2021 ◽  
Vol 32 (2) ◽  
pp. 377-382
Author(s):  
Bülent Kılıç ◽  
Mustafa Çalışkan ◽  
Anıl Agar ◽  
Bora Uzun ◽  
Fatih Ertem ◽  
...  

Objectives: In this mechanical study, we aimed to compare two different screw trajectories in terms of durability against axial loads on oblique scaphoid fractures using composite bone models. Materials and methods: Oblique osteotomies were made along the dorsal sulcus of 14 composite scaphoid bone models. Following this, all bone models were randomly classified. One group of bones were fixed with a screw placed perpendicular to the osteotomy line and the other group was fixed with a screw placed centrally down the long axis of the scaphoid bone. Each scaphoid bone model was positioned on a mechanical testing machine. Subsequently, axial loading tests were applied on each bone model to measure the amount of loading required to cause 2-mm displacement and failure on the osteotomy side and maximum displacement at the time of failure on scaphoid bone models. Results: There was no statistically significant difference in load to 2-mm displacement and failure between the two groups (p>0.05). Also, there was no statistically significant difference between the two groups in terms of maximum displacement seen on failure (p>0.05). Conclusion: In our study, we found that the stability of the screws which laid perpendicular to the fracture line and parallel to the long axis of the scaphoid was the same in fixing oblique scaphoid fractures.


2021 ◽  
Vol 11 (17) ◽  
pp. 7801
Author(s):  
Tae Sik Goh ◽  
Sung-Chan Shin ◽  
Hyun-Keun Kwon ◽  
Eui-Suk Sung ◽  
Se Bin Jun ◽  
...  

Pedicle screw instrumentation is a fundamental technique in lumbar spine surgery. However, several complications could occur when placing a pedicle screw, the most serious being damage to the neural structures. We developed an attachable magnetic nerve stimulating probe used for triggered electromyography (t-EMG) to avoid these. This study aimed to investigate the efficacy of this probe for intraoperative neuromonitoring (ION) during lumbar pedicle screw placement in a porcine model. Forty pedicle screws were inserted bilaterally into the pedicles of the fourth and fifth lumbar vertebrae of five pigs; 20 were inserted typically into the pedicle without nerve damage (Group A), and the other 20 were inserted through the broken medial wall of the pedicle to permit contact with the neural structures (Group B). We measured the triggered threshold for pedicle screw placement through the conventional nerve probe and our newly developed magnetic probe. There was no significant difference in the triggered threshold between the two instruments (p = 0.828). Our newly developed magnetic stimulating probe can be attached to a screwdriver, thus preventing real-time screw malpositioning and making it practical and equally safe. This probe could become indispensable in revision spine surgeries with severe adhesions or endoscopic spine surgeries.


2020 ◽  
Author(s):  
Yangming Chen ◽  
Jiguang Zhang ◽  
Qianshun Chen ◽  
Tian Li ◽  
Kai Chen ◽  
...  

Abstract Background Three-dimensional (3D) CT reconstruction technology has gained increasing attention owing to its potential in locating ground glass nodules in the lung. The 3D printing technology additionally allows visualising the surrounding anatomical structure and variations. However, the clinical utility of these techniques is not known. We aimed to establish a lung tumour and an anatomical lung model using three-dimensional (3D) printing and 3D chest computed tomography (CT) reconstruction and to evaluate the clinical potential of 3D printing technology in uniportal video-assisted thoracoscopic segmentectomy. Methods Eighty-nine patients with ground glass nodules who underwent uniportal video-assisted thoracoscopic segmentectomy were divided into the following groups: Group A, lung models for pre-positioning and simulated surgery that were made with 3D chest CT reconstruction and 3D printing; Group B, patients who underwent chest CT scans with image enhancement for 3D reconstruction. The differences in the surgery approach transfer rate, surgical method conversion rate, operative time, intraoperative blood loss, and postoperative complication rate were compared between the groups. Results The surgery approach transfer rate was 0% and 10.5% for Groups A and B, respectively, showing a significant difference (p = 0.030). The operative time was 2.07 ± 0.24 hours and 2.55 ± 0.41 hours, respectively, showing a significant difference (p<༜0.001). Intraoperative blood loss volume was 43.25 ± 13.63 and 96.68 ± 32.82 ml, respectively, showing a significant difference (p<༜0.001). The postoperative complication rate was 3.9% and 13.2%, respectively, showing a non-significant difference (P = 0.132). The rate of surgical method conversion to lobectomy in Group A was 0%, which was significantly lower than that of 10.5% in group B (p < 0.030). Conclusions 3D printing technology helps surgeons to locate the nodules more accurately, as it is based on 2D and 3D imaging findings, thereby improving the accuracy and safety of surgery. This technique is worth for application in clinical practice. Trial registration: Retrospectively registered.


2015 ◽  
Vol 105 (4) ◽  
pp. 307-312 ◽  
Author(s):  
Mustafa Uslu ◽  
Mustafa E. Inanmaz ◽  
Mustafa Ozsahin ◽  
Cengiz Isık ◽  
Mehmet Arıcan ◽  
...  

Background Cohesive taping is commonly used for the prevention or treatment of ankle sprain injuries. Short-leg cast immobilization or splinting is another treatment option in such cases. To determine the clinical efficacy and antiedema effects of cohesive taping and short-leg cast immobilization in acute low-type ankle sprains of physically active patients, we performed a preliminary clinical study to assess objective evidence for edema and functional patient American Orthopaedic Foot and Ankle Society (AOFAS) scores with these alternative treatments. Methods Fifty-nine physically active patients were included: 32 in the taping group and 27 in the short-leg cast group within a year. If a sprain was moderate (grade II) or mild (grade I), we used functional taping or short-leg cast immobilization for 10 days. We evaluated the edema and the functional scores of the injured ankle using the AOFAS Clinical Rating System on days 1, 10, and 100. Results In each group, edema significantly decreased and AOFAS scores increased indicating that both treatment methods were effective. With the numbers available, no statistically significant difference could be detected. Conclusions Each treatment method was effective in decreasing the edema and increasing the functional scores of the ankle. At the beginning of treatment, not only the level of edema but also the initial functional scores of the ankle and examinations are important in making decisions regarding the optimal treatment option.


2017 ◽  
Vol 07 (01) ◽  
pp. 066-070 ◽  
Author(s):  
Morgan Swanstrom ◽  
Kyle Morse ◽  
Joseph Lipman ◽  
Krystle Hearns ◽  
Michelle Carlson

Background Ideal internal fixation of the scaphoid relies on adequate bone stock for screw purchase; so, knowledge of regional bone density of the scaphoid is crucial. Questions/Purpose The purpose of this study was to evaluate regional variations in scaphoid bone density. Materials and Methods Three-dimensional CT models of fractured scaphoids were created and sectioned into proximal/distal segments and then into quadrants (volar/dorsal/radial/ulnar). Concentric shells in the proximal and distal pole were constructed in 2-mm increments moving from exterior to interior. Bone density was measured in Hounsfield units (HU). Results Bone density of the distal scaphoid (453.2 ± 70.8 HU) was less than the proximal scaphoid (619.8 ± 124.2 HU). There was no difference in bone density between the four quadrants in either pole. In both the poles, the first subchondral shell was the densest. In both the proximal and distal poles, bone density decreased significantly in all three deeper shells. Conclusion The proximal scaphoid had a greater density than the distal scaphoid. Within the poles, there was no difference in bone density between the quadrants. The subchondral 2-mm shell had the greatest density. Bone density dropped off significantly between the first and second shell in both the proximal and distal scaphoids. Clinical Relevance In scaphoid fracture ORIF, optimal screw placement engages the subchondral 2-mm shell, especially in the distal pole, which has an overall lower bone density, and the second shell has only two-third the density of the first shell.


Sign in / Sign up

Export Citation Format

Share Document