Tibiofemoral Joint Contact During the Loading Response Phase of Gait in Individuals With Concurrent Knee Osteoarthritis and Complaints of Joint Instability

Author(s):  
Carrie A. Rainis ◽  
Shawn Farrokhi ◽  
Scott Tashman ◽  
G. Kelley Fitzgerald

Knee osteoarthritis (OA) is one of the most prevalent chronic conditions affecting older adults and commonly leads to pain and functional limitations. Many individuals with knee OA also report episodes of knee instability, which has been shown to adversely affect their ability to perform weight-bearing functional tasks. [1] Recently it was reported that individuals with knee OA and reports of joint instability demonstrate significant reductions in their sagittal and transverse plane rotational knee joint motion. [2] It is conceivable that the decreased rotational joint motion may represent a compensatory attempt to avoid pain and/or to stabilize an unstable knee joint. However, this movement strategy may be problematic in the long term as it could lead to increased compressive loading and a reduction of shock absorption capabilities. Since abnormal rotation is associated with altered joint contact position [3], and the internal/external rotation axis in the normal knee is located on the medial side [4,5], this patient population may exhibit a decreased contact path length in the lateral compartment during the loading response phase of gait. The combination of a reduced contact path length and cartilage loss could in turn lead to a decreased dynamic joint space [6] and concentration of joint stresses responsible for disease progression. Therefore, the objectives of this work were to 1) compare the tibiofemoral joint contact path length and dynamic joint space in the medial and lateral compartments during the loading response phase of gait in individuals with knee OA and complaints of joint instability to a healthy control group and 2) investigate the relationship between these parameters.

2014 ◽  
Vol 29 (6) ◽  
pp. 629-635 ◽  
Author(s):  
Shawn Farrokhi ◽  
Carrie A. Voycheck ◽  
Brian A. Klatt ◽  
Jonathan A. Gustafson ◽  
Scott Tashman ◽  
...  

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2960 ◽  
Author(s):  
Ross H. Miller ◽  
Rebecca L. Krupenevich ◽  
Alison L. Pruziner ◽  
Erik J. Wolf ◽  
Barri L. Schnall

BackgroundIndividuals with unilateral lower limb amputation have a high risk of developing knee osteoarthritis (OA) in their intact limb as they age. This risk may be related to joint loading experienced earlier in life. We hypothesized that loading during walking would be greater in the intact limb of young US military service members with limb loss than in controls with no limb loss.MethodsCross-sectional instrumented gait analysis at self-selected walking speeds with a limb loss group (N = 10, age 27 ± 5 years, 170 ± 36 days since last surgery) including five service members with transtibial limb loss and five with transfemoral limb loss, all walking independently with their first prosthesis for approximately two months. Controls (N = 10, age 30 ± 4 years) were service members with no overt demographical risk factors for knee OA. 3D inverse dynamics modeling was performed to calculate joint moments and medial knee joint contact forces (JCF) were calculated using a reduction-based musculoskeletal modeling method and expressed relative to body weight (BW).ResultsPeak JCF and maximum JCF loading rate were significantly greater in limb loss (184% BW, 2,469% BW/s) vs. controls (157% BW, 1,985% BW/s), with large effect sizes. Results were robust to probabilistic perturbations to the knee model parameters.DiscussionAssuming these data are reflective of joint loading experienced in daily life, they support a “mechanical overloading” hypothesis for the risk of developing knee OA in the intact limb of limb loss subjects. Examination of the evolution of gait mechanics, joint loading, and joint health over time, as well as interventions to reduce load or strengthen the ability of the joint to withstand loads, is warranted.


2018 ◽  
Vol 34 (5) ◽  
pp. 419-423 ◽  
Author(s):  
Christopher M. Saliba ◽  
Allison L. Clouthier ◽  
Scott C.E. Brandon ◽  
Michael J. Rainbow ◽  
Kevin J. Deluzio

Abnormal loading of the knee joint contributes to the pathogenesis of knee osteoarthritis. Gait retraining is a noninvasive intervention that aims to reduce knee loads by providing audible, visual, or haptic feedback of gait parameters. The computational expense of joint contact force prediction has limited real-time feedback to surrogate measures of the contact force, such as the knee adduction moment. We developed a method to predict knee joint contact forces using motion analysis and a statistical regression model that can be implemented in near real-time. Gait waveform variables were deconstructed using principal component analysis, and a linear regression was used to predict the principal component scores of the contact force waveforms. Knee joint contact force waveforms were reconstructed using the predicted scores. We tested our method using a heterogenous population of asymptomatic controls and subjects with knee osteoarthritis. The reconstructed contact force waveforms had mean (SD) root mean square differences of 0.17 (0.05) bodyweight compared with the contact forces predicted by a musculoskeletal model. Our method successfully predicted subject-specific shape features of contact force waveforms and is a potentially powerful tool in biofeedback and clinical gait analysis.


2016 ◽  
Vol 25 (3) ◽  
pp. 213-218
Author(s):  
Charlie A. Hicks-Little ◽  
Richard D. Peindl ◽  
Tricia J. Hubbard-Turner ◽  
Mitchell L. Cordova

Context:Knee osteoarthritis (OA) is a debilitating disease that affects an estimated 27 million Americans. Changes in lowerextremity alignment and joint laxity have been found to redistribute the medial and/or lateral loads at the joint. However, the effect that changes in anteroposterior knee-joint laxity have on lower-extremity alignment and function in individuals with knee OA remains unclear.Objective:To examine anteroposterior knee-joint laxity, lower-extremity alignment, and subjective pain, stiffness, and function scores in individuals with early-stage knee OA and matched controls and to determine if a relationship exists among these measures.Design:Case control.Setting:Sports-medicine research laboratory.Participants:18 participants with knee OA and 18 healthy matched controls.Intervention:Participants completed the Western Ontario McMaster (WOMAC) osteoarthritis questionnaire and were tested for total anteroposterior knee-joint laxity (A-P) and knee-joint alignment (ALIGN).Main Outcome Measures:WOMAC scores, A-P (mm), and ALIGN (°).Results:A significant multivariate main effect for group (Wilks’ Λ = 0.30, F7,26 = 8.58, P < .0001) was found. Knee-OA participants differed in WOMAC scores (P < .0001) but did not differ from healthy controls on ALIGN (P = .49) or total A-P (P = .66). No significant relationships were identified among main outcome measures.Conclusion:These data demonstrate that participants with early-stage knee OA had worse pain, stiffness, and functional outcome scores than the matched controls; however, ALIGN and A-P were no different. There was no association identified among participants’ subjective scores, ALIGN, or A-P measures in this study.


Rheumatology ◽  
2020 ◽  
Author(s):  
Dawei Xu ◽  
Jan van der Voet ◽  
Nils M Hansson ◽  
Stefan Klein ◽  
Edwin H G Oei ◽  
...  

Abstract Objective To assess the association between meniscal volume, its change over time and the development of knee OA after 30 months in overweight/obese women. Methods Data from the PRevention of knee Osteoarthritis in Overweight Females study were used. This cohort included 407 women with a BMI ≥ 27 kg/m2, free of OA-related symptoms. The primary outcome measure was incident OA after 30 months, defined by one out of the following criteria: medial or lateral joint space narrowing (JSN)  ≥ 1.0 mm, incident radiographic OA [Kellgren and Lawrence (K&L)  ≥ 2], or incident clinical OA. The secondary outcomes were either of these items separately. Menisci at both baseline and follow-up were automatically segmented to obtain meniscal volume and delta-volumes. Generalized estimating equations were used to evaluate associations between the volume measures and the outcomes. Results Medial and lateral baseline and delta-volumes were not significantly associated to the primary outcome. Lateral meniscal baseline volume was significantly associated to lateral JSN [odds ratio (OR) = 0.87; 95% CI: 0.75, 0.99], while other measures were not. Medial and lateral baseline volume were positively associated to K&L incidence (OR = 1.32 and 1.22; 95% CI: 1.15, 1.50 and 1.03, 1.45, respectively), while medial and lateral delta-volume were negatively associated to K&L incidence (OR = 0.998 and 0.997; 95% CI: 0.997, 1.000 and 0.996, 0.999, respectively). None of the meniscal measures were significantly associated to incident clinical OA. Conclusion Larger baseline meniscal volume and the decrease of meniscal volume over time were associated to the development of structural OA after 30 months in overweight and obese women.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Jana Podlipská ◽  
Ali Guermazi ◽  
Petri Lehenkari ◽  
Jaakko Niinimäki ◽  
Frank W. Roemer ◽  
...  

Abstract Osteoarthritis (OA) is a common degenerative musculoskeletal disease highly prevalent in aging societies worldwide. Traditionally, knee OA is diagnosed using conventional radiography. However, structural changes of articular cartilage or menisci cannot be directly evaluated using this method. On the other hand, ultrasound is a promising tool able to provide direct information on soft tissue degeneration. The aim of our study was to systematically determine the site-specific diagnostic performance of semi-quantitative ultrasound grading of knee femoral articular cartilage, osteophytes and meniscal extrusion, and of radiographic assessment of joint space narrowing and osteophytes, using MRI as a reference standard. Eighty asymptomatic and 79 symptomatic subjects with mean age of 57.7 years were included in the study. Ultrasound performed best in the assessment of femoral medial and lateral osteophytes, and medial meniscal extrusion. In comparison to radiography, ultrasound performed better or at least equally well in identification of tibio-femoral osteophytes, medial meniscal extrusion and medial femoral cartilage morphological degeneration. Ultrasound provides relevant additional diagnostic information on tissue-specific morphological changes not depicted by conventional radiography. Consequently, the use of ultrasound as a complementary imaging tool along with radiography may enable more accurate and cost-effective diagnostics of knee osteoarthritis at the primary healthcare level.


Sign in / Sign up

Export Citation Format

Share Document