A Novel Perfusion Bioreactor for 3D Cell Culture in Microgravity Conditions

Author(s):  
Giuseppe Isu ◽  
Diana Massai ◽  
Giulia Cerino ◽  
Diego Gallo ◽  
Cristina Bignardi ◽  
...  

Cell suspension culture methods based on the generation of microgravity environment are widely used in regenerative medicine for (1) the production of native-like three-dimensional (3D) cell aggregates and engineered tissues [1,2,3], for (2) low cost scalable cell expansion and long-term cell viability maintenance [4,5], and for (3) guiding differentiation of stem cells (SCs) [6]. The generation of a microgravity environment for 3D cell cultures, mimicking the native environment, promotes spatial freedom, cell growth, cell-cell interaction and improves mass transfer and cell exposure to nutrients. Nowadays, microgravity cell cultures are obtained by using stirred or rotating bioreactors, but both devices suffer from limitations: stirring bioreactors generate non-physiological shear stresses, which could damage cultured cells, interfere with SC pluripotency, and limit reproducibility of the culture process; rotating bioreactors are expensive devices due to the complex technological solutions adopted for obtaining rotation [5].

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sun Young Lee ◽  
Sung Bum Park ◽  
Young Eun Kim ◽  
Hee Min Yoo ◽  
Jongki Hong ◽  
...  

AbstractThe demand for novel three-dimensional (3D) cell culture models of adipose tissue has been increasing, and proteomic investigations are important for determining the underlying causes of obesity, type II diabetes, and metabolic disorders. In this study, we performed global quantitative proteomic profiling of three 3D-cultured 3T3-L1 cells (preadipocytes, adipocytes and co-cultured adipocytes with macrophages) and their 2D-cultured counterparts using 2D-nanoLC-ESI-MS/MS with iTRAQ labelling. A total of 2,885 shared proteins from six types of adipose cells were identified and quantified in four replicates. Among them, 48 proteins involved in carbohydrate metabolism (e.g., PDHα, MDH1/2, FH) and the mitochondrial fatty acid beta oxidation pathway (e.g., VLCAD, ACADM, ECHDC1, ALDH6A1) were relatively up-regulated in the 3D co-culture model compared to those in 2D and 3D mono-cultured cells. Conversely, 12 proteins implicated in cellular component organisation (e.g., ANXA1, ANXA2) and the cell cycle (e.g., MCM family proteins) were down-regulated. These quantitative assessments showed that the 3D co-culture system of adipocytes and macrophages led to the development of insulin resistance, thereby providing a promising in vitro obesity model that is more equivalent to the in vivo conditions with respect to the mechanisms underpinning metabolic syndromes and the effect of new medical treatments for metabolic disorders.


Chemosensors ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 6 ◽  
Author(s):  
Georgia Paivana ◽  
Theofylaktos Apostolou ◽  
Sophie Mavrikou ◽  
Dimitris Barmpakos ◽  
Grigoris Kaltsas ◽  
...  

In this work, the assessment of the interactions of a bioactive substance applied to immobilized cells in either a two-dimensional (2D) or three-dimensional (3D) arrangement mimicking in vivo tissue conditions is presented. In particular, dopamine (DA) was selected as a stimulant for the implementation of an impedance analysis with a specific type of neural cells (murine neuroblastoma). The aim of this study was the extraction of calibration curves at various frequencies with different known dopamine concentrations for the description of the behavior of dopamine applied to 2D and 3D cell cultures. The results present the evaluation of the mean impedance value for each immobilization technique in each frequency. The differential responses showed the importance of the impedance when frequency is applied in both 2D and 3D immobilization cases. More specifically, in 2D immobilization matrix impedance shows higher values in comparison with the 3D cell culture. Additionally, in the 3D case, the impedance decreases with increasing concentration, while in the 2D case, an opposite behavior was observed.


2020 ◽  
Vol 21 (18) ◽  
pp. 6806 ◽  
Author(s):  
Fabrizio Fontana ◽  
Michela Raimondi ◽  
Monica Marzagalli ◽  
Michele Sommariva ◽  
Nicoletta Gagliano ◽  
...  

In the last decade, three-dimensional (3D) cell culture technology has gained a lot of interest due to its ability to better recapitulate the in vivo organization and microenvironment of in vitro cultured cancer cells. In particular, 3D tumor models have demonstrated several different characteristics compared with traditional two-dimensional (2D) cultures and have provided an interesting link between the latter and animal experiments. Indeed, 3D cell cultures represent a useful platform for the identification of the biological features of cancer cells as well as for the screening of novel antitumor agents. The present review is aimed at summarizing the most common 3D cell culture methods and applications, with a focus on prostate cancer modeling and drug discovery.


2020 ◽  
Vol 25 (3) ◽  
pp. 234-246
Author(s):  
Charles McRae White ◽  
Mark A. Haidekker ◽  
William S. Kisaalita

New insights into the biomechanical properties of cells are revealing the importance of these properties and how they relate to underlying molecular, architectural, and behavioral changes associated with cell state and disease processes. However, the current understanding of how these in vitro biomechanical properties are associated with in vivo processes has been developed based on the traditional monolayer (two-dimensional [2D]) cell culture, which traditionally has not translated well to the three-dimensional (3D) cell culture and in vivo function. Many gold standard methods and tools used to observe the biomechanical properties of 2D cell cultures cannot be used with 3D cell cultures. Fluorescent molecules can respond to external factors almost instantaneously and require relatively low-cost instrumentation. In this review, we provide the background on fluorescent molecular rotors, which are attractive tools due to the relationship of their emission quantum yield with environmental microviscosity. We make the case for their use in both 2D and 3D cell cultures and speculate on their fundamental and practical applications in cell biology.


Author(s):  
Loh Teng Hern Tan ◽  
Liang Ee Low ◽  
Siah Ying Tang ◽  
Wei Hsum Yap ◽  
Lay Hong Chuah ◽  
...  

Three-dimensional cell culture methods revolutionize the field of anticancer drug discovery, forming an important link-bridge between conventional in vitro and in vivo models and conferring significant clinical and biological relevant data. The current work presents an affordable yet reproducible method of generating homogenous 3D tumor spheroids. Also, a new open source software is adapted to perform an automated image analysis of 3D tumor spheroids and subsequently generate a list of morphological parameters of which could be utilized to determine the response of these spheroids toward treatments. Our data showed that this work could serve as a reliable 3D cell culture platform for preclinical cytotoxicity testing of natural products prior to the expensive and time-consuming animal models


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1470 ◽  
Author(s):  
Dettin ◽  
Sieni ◽  
Zamuner ◽  
Marino ◽  
Sgarbossa ◽  
...  

Tumor electroporation (EP) refers to the permeabilization of the cell membrane by means of short electric pulses thus allowing the potentiation of chemotherapeutic drugs. Standard plate adhesion 2D cell cultures can simulate the in vivo environment only partially due to lack of cell–cell interaction and extracellular matrix (ECM). In this study, we assessed a novel 3D scaffold for cell cultures based on hyaluronic acid and ionic-complementary self-assembling peptides (SAPs), by studying the growth patterns of two different breast carcinoma cell lines (HCC1569 and MDA-MB231). This 3D scaffold modulates cell shape and induces extracellular matrix deposit around cells. In the MDA-MB 231 cell line, it allows three-dimensional growth of structures known as spheroids, while in HCC1569 it achieves a cell organization similar to that observed in vivo. Interestingly, we were able to visualize the electroporation effect on the cells seeded in the new scaffold by means of standard propidium iodide assay and fluorescence microscopy. Thanks to the presence of cell–cell and cell–ECM interactions, the new 3D scaffold may represent a more reliable support for EP studies than 2D cancer cell cultures and may be used to test new EP-delivered drugs and novel EP protocols.


Author(s):  
Qingfu Zhu ◽  
Ziyu Zhu ◽  
Mei He

3D additive manufacturing, namely 3D printing, has been increasingly needed in the fabrication of biological materials and devices. Compared to traditional fabrication, direct 3D digital transformation simplifies the manufacturing process and enhances capability in geometric fabrication. In this paper, we demonstrated a rapid and low-cost 3D printing approach for “lego” assembly of micro-structured parts as an electro-transfection device. Electro-transfection is an essential equipment for engineering and regulating cell biological functions. Nevertheless, existing platforms are mainly employed to monolayer cell suspensions in vitro, which showed more failures for translating into tissues and in vivo systems constituted by 3D cells. The knowledge regarding the three-dimensional electric transport and distribution in a tissue microenvironment is lacking. In order to bridge the gap, we assembled PDMS parts molded from 3D-printed molds as the 3D-cell culture chamber, which connects arrays of perfusion channels and electrodes. Such design allows spatial and temporal control of electric field uniformly across a large volume of 3D cells (105∼106 cells). Most importantly, multi-dimensional electric frequency scanning creates local oscillation, which can enhance mass transport and electroporation for improving transfection efficiency. The COMSOL electrostatic simulation was employed for proof of concept of 3D electric field distribution and transport in this “lego” assembled electro-transfection device, which builds the foundation for engineering 3D-cultured cells and tissues.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Xuan Zhang ◽  
Ming-Gen Hu ◽  
Ke Pan ◽  
Chong-Hui Li ◽  
Rong Liu

Three-dimensional (3D) cell culture has been reported to increase the therapeutic potentials of mesenchymal stem cells (MSCs). However, the action mechanisms of 3D MSCs vary greatly and are far from being thoroughly investigated. In this study, we aimed to investigate the therapeutic effects of 3D spheroids of human adipose-derived MSCs for hepatic fibrosis. Our results showed that 3D culture enhanced the expression of antifibrotic factors by MSCs, including insulin growth factor 1 (IGF-1), interleukin-6 (IL-6), and hepatocyte growth factor (HGF).In vitrostudies indicated conditioned medium of 3D cultured MSCs protected hepatocytes from cell injury and apoptosis more effectively compared with 2D cultured cells. More importantly, when transplanted into model mice with hepatic fibrosis, 3D spheroids of MSCs were more beneficial in ameliorating hepatic fibrosis and improving liver function than 2D cultured cells. Therefore, the 3D culture strategy improved the therapeutic effects of MSCs and might be promising for treatment of hepatic fibrosis.


Physiology ◽  
2017 ◽  
Vol 32 (4) ◽  
pp. 266-277 ◽  
Author(s):  
Kayla Duval ◽  
Hannah Grover ◽  
Li-Hsin Han ◽  
Yongchao Mou ◽  
Adrian F. Pegoraro ◽  
...  

Cell culture has become an indispensable tool to help uncover fundamental biophysical and biomolecular mechanisms by which cells assemble into tissues and organs, how these tissues function, and how that function becomes disrupted in disease. Cell culture is now widely used in biomedical research, tissue engineering, regenerative medicine, and industrial practices. Although flat, two-dimensional (2D) cell culture has predominated, recent research has shifted toward culture using three-dimensional (3D) structures, and more realistic biochemical and biomechanical microenvironments. Nevertheless, in 3D cell culture, many challenges remain, including the tissue-tissue interface, the mechanical microenvironment, and the spatiotemporal distributions of oxygen, nutrients, and metabolic wastes. Here, we review 2D and 3D cell culture methods, discuss advantages and limitations of these techniques in modeling physiologically and pathologically relevant processes, and suggest directions for future research.


2010 ◽  
Vol 38 (4) ◽  
pp. 1072-1075 ◽  
Author(s):  
Daniel J. Maltman ◽  
Stefan A. Przyborski

Drug discovery programmes require accurate in vitro systems for drug screening and testing. Traditional cell culture makes use of 2D (two-dimensional) surfaces for ex vivo cell growth. In such environments, cells are forced to adopt unnatural characteristics, including aberrant flattened morphologies. Therefore there is a strong demand for new cell culture platforms which allow cells to grow and respond to their environment in a more realistic manner. The development of 3D (three-dimensional) alternative substrates for in vitro cell growth has received much attention, and it is widely acknowledged that 3D cell growth is likely to more accurately reflect the in vivo tissue environments from which cultured cells are derived. 3D cell growth techniques promise numerous advantages over 2D culture, including enhanced proliferation and differentiation of stem cells. The present review focuses on the development of scaffold technologies for 3D cell culture.


Sign in / Sign up

Export Citation Format

Share Document