High Oleic Plant Oils With Hydroxy Fatty Acids for Emission Reduction

Author(s):  
J. Grushcow

The lubricating properties of vegetable oil are well known. However, with the advent of petroleum oils, castor oil and other vegetable oils fell out of favor. The quality of petroleum oils has improved significantly in the last few years with the introduction of Group III base oils. However, even Group III oils fall short of the inherent lubricity of vegetable oils. Analogous to advances in petroleum oils, improvement of vegetable oils by genetic modification to obtain high oleic oils has led to better acceptance of these oils as lubricants. Studies have shown significant reduction in tail pipe emissions when using these types of oils in an engine crank case. We have successfully expressed a hydroxylase gene in a high oleic canola variety. The combination of a high oleic background and hydroxy fatty acids produced an oil with properties that improve further on high oleic oils. The presence of the hydroxy group provides improved lubricity. This technology will allow us to create oils with varying hydroxy fatty acid content depending on the application. These applications can range from use in lubricants, as chemical feedstocks, and reactive components in polymers.

2015 ◽  
Vol 44 (5) ◽  
pp. 44-50
Author(s):  
OS Olubowale ◽  
FH De Witt ◽  
JPC Greyling ◽  
A Hugo ◽  
AM Jooste ◽  
...  

This study was conducted to investigate the effect of dietary fatty acids (FA) on the fertility and hatchability of laying hens at the end-of-lay period (69 - 77 weeks of age). Five isoenergetic (12.4 MJ ME/kg DM) and isonitrogenous (170 g CP/kg DM) diets were formulated using different lipid sources (30 g/kg inclusion) to manipulate the dietary FA profile. The control diet was formulated using a 50 : 50 blend of linseed and fish oil, while fish oil was used in the polyunsaturated n-3 treatment. Sunflower oil was used in the polyunsaturated n-6 treatment, while in the mono-unsaturated n-9 diet high oleic acid (HO) sunflower oil was used. Lastly, tallow was used as a lipid source in the saturated FA diet. One hundred and twenty five hens (n = 25/treatment) and 50 cockerels (n = 10/treatment) of the Hy-Line Silver-Brown genotype were randomly allocated to the five dietary treatments at 20 weeks of age. From 69 weeks of age, hens were inseminated with 0.06 mL undiluted semen from cockerels within the same dietary treatment. Between 71 and 78 weeks of age (49 days) a total of 588 eggs-per-treatment were collected, individually marked (date and hen number) and incubated in a single-stage still-air incubator. Eggs were candled on D7 and D14 to determine embryonic mortalities and a 24 h window for hatching was allowed (D21 + 24 h). Although the fish oil treatment resulted in the lowest egg weights (59.3 g) and fertility (84.6%), it recorded the highest hatchability (76%). In contrast, the sunflower oil treatment recorded the lowest hatchability (58.2%) of all treatments, despite its high egg fertility (89.6%). Results of the study suggest that the dietary fatty acid content, in particular the n-3 and n-6 levels, need critical consideration in terms of concentration and ratio in the formulation of breeder diets to limit embryonic mortalities during incubation.Keywords: Chicks, embryo, mortality, mono-, polyunsaturated fatty acids


2021 ◽  
Vol 8 (1) ◽  
pp. 243-251
Author(s):  
St Nova Meirizha ◽  
Dian Kristina

Quality is the overall characteristics and characteristics of a product or service whose ability to satisfy needs, both expressed and implied (Irwan & Haryono, 2015). In this era of increasingly competitive industrialization, every business person who wants to win the competition in the industrial world will pay full attention to quality. QCC is a new concept to improve the quality and productivity of industrial/service work. It is evident that one of the success factors of industrialization in Japan is the effective implementation of QCC. In this research journal, the quality of crude palm oil (CPO) levels is decreasing. There are 3 types of defects, namely levels of FFA (Free Fatty Acids), levels of Moisture (Water) and levels of Dirt (Stool). Of these three, the most dominant are FFA levels and Moisture levels. Free fatty acid content (FFA) of 158 samples tested contained 150 samples of free fatty acids (FFA) which were outside the company standard. Then followed by moisture content with a total defect of 45 samples from 158 test samples. At the level of dirt (Dirt) there are absolutely no samples that are outside the company's standards.


Author(s):  
Deiyse Alves Silva ◽  
Vicente Ribeiro Rocha Júnior ◽  
José Reinaldo Mendes Ruas ◽  
Pedro Felipe Santana ◽  
Luana Alcântara Borges ◽  
...  

Abstract: The objective of this work was to evaluate the chemical composition and fatty acid profile of milk from F1 Holstein/Zebu cows in different lactation periods, when receiving different levels of dietary supply in percentage of body weight. Sixty cows were evaluated, with five levels of dietary supply and three lactation periods. The levels of dietary supply had no effect on the production of milk corrected to 3.5% fat (12.25 kg per day). There was also no effect of dietary supply levels, in the different lactation periods, on contents of fat (3.34%), protein (3.41%), lactose (4.60%), total solids (12.0%), defatted dry extract (8.80%), and urinary nitrogen (14.5 mg dL-1), nor on somatic cell count (89.98 mL-1). As the dietary supply level was reduced, the sum of saturated fatty acids in milk was decreased in up to 9.15% and that of monounsaturated fatty acids was increased in up to 25.28%. Feed restriction does not alter the chemical composition of milk, but improves its quality of fat by reducing saturated fatty acid content, increasing the concentration of monounsaturated and desirable fatty acids in up to 54%, and increasing the hypo- and hypercholesterolemic fatty acid ratio in up to 168.97%.


2021 ◽  
pp. 69-74
Author(s):  
S.O. Zubenko ◽  

Acid value is one of the key technical characteristic of vegetable oils and oleochemicals, obtaining on its basis. The existing standard methods of acid value measurement are relatively complicated and have some disadvantages. There are including utilization of the significant amounts of solvents, throwing out as wastes, and necessity in special equipment for determination. Also, a special issue is visual indication of the equivalence point of indicator transfer from acid to alkali form for intensive colored oils’ samples. Visual indication of the color transfer of phenol-phthalein as indicator (from colorless to pink) is quite difficult. The color transfer of thymolphthalein (from yellow to green) in such condition is not determined. Using of alkali blue 6B is complicated by the necessity of use ethanol and aromatic compounds mixture. In current work the rapid and simple method of acid value determination was proposed. It consists in alkali-acid titration of the sample by sodium butoxide solution in n-butanol with bromothymol blue, n-butanol is also using as solvent. The method was tested on 3 series of the mixtures of the refined sunflower oil and free fatty acids (distilled fatty acids of sunflower and rapeseed oils and chemical grade oleic acid). The fatty acid content in tested mixtures was in range 1-50 % wt. Some disadvantages of traditional methods, such as the necessity of mixed solvents’ and relatively complicated laboratory equipment use, titration in a hot state, effect of temperature changes in the laboratory and difficulties with visual indication of color transfer, were overcame. Proposed method requires only the simplest laboratory glassware (conic flasks, non-calibrated pipettes, hermetically sealed glass vessels for titrant) and technical laboratory scales (weighting accuracy ±0.01 g). The method allows to determine the acid value in wide range of samples, including the samples with intense coloration. The relatively high accuracy of acid value determination was shown. The method sensitivity is 0.02-0.10 mg KOH/g. The time for analyze is enough short (about 5-15 minutes).


2017 ◽  
Vol 83 (9) ◽  
Author(s):  
Woo-Ri Kang ◽  
Min-Ju Seo ◽  
Kyung-Chul Shin ◽  
Jin-Byung Park ◽  
Deok-Kun Oh

ABSTRACT Oleate hydratases (OhyAs) catalyze the conversion of unsaturated fatty acids to 10-hydroxy fatty acids, which are used as precursors of important industrial compounds, including lactones and ω-hydroxycarboxylic and α,ω-dicarboxylic acids. The genes encoding OhyA and a putative fatty acid hydratase in Stenotrophomonas maltophilia were identified by genomic analysis. The putative fatty acid hydratase was purified and identified as an oleate hydratase (OhyA2) based on its substrate specificity. The activity of OhyA2 as a holoenzyme was not affected by adding cofactors, whereas the activity of the original oleate hydratase (OhyA1) showed an increase. Thus, all characterized OhyAs were categorized as either OhyA1 or OhyA2 based on the activities of holoenzymes upon adding cofactors, which were determined by the type of the fourth conserved amino acid of flavin adenine dinucleotide (FAD)-binding motif. The hydration activities of S. maltophilia OhyA2 toward unsaturated fatty acids, including oleic acid, palmitoleic acid, linoleic acid, α-linolenic acid, and γ-linolenic acid, were greater than those of OhyA1. Moreover, the specific activity of S. maltophilia OhyA2 toward unsaturated fatty acids, with the exception of γ-linolenic acid, was the highest among all reported OhyAs. IMPORTANCE All characterized OhyAs were categorized as OhyA1s or OhyA2s based on the different properties of the reported and newly identified holo-OhyAs in S. maltophilia upon the addition of cofactors. OhyA2s showed higher activities toward polyunsaturated fatty acids (PUFAs), including linoleic acid, α-linolenic acid, and γ-linolenic acid, than those of OhyA1s. This suggests that OhyA2s can be used more effectively to convert plant oils to 10-hydroxy fatty acids because plant oils contain not only oleic acid but also PUFAs. The hydration activity of the newly identified OhyA2 from S. maltophilia toward oleic acid was the highest among the activity levels reported so far. Therefore, this enzyme is an efficient biocatalyst for the conversion of plant oils to 10-hydroxy fatty acids, which can be further converted to important industrial materials.


2003 ◽  
Vol 49 (7) ◽  
pp. 1149-1153 ◽  
Author(s):  
Bogumiła Szponar ◽  
Leonard Kraśnik ◽  
Tomasz Hryniewiecki ◽  
Andrzej Gamian ◽  
Lennart Larsson

Abstract Background: 3-Hydroxy fatty acids (3-OH FAs) with 10- to 18-carbon chain lengths are constituents of the endotoxin [lipopolysaccharide (LPS)] of gram-negative bacteria. We investigated whether these FAs may be used as chemical markers in measuring endotoxin concentrations in mammalian tissue samples. Methods: We used gas-liquid chromatography–tandem mass spectrometry to measure 3-OH FAs in serum and tissues (heart, liver, and skeletal muscles) of rats after intraperitoneal injection of Escherichia coli LPS. One group of rats (group I) received a single LPS dose of 20 mg/kg of body weight; group II rats received the same total dose but over the course of 10 days (2 mg/kg each day). Rats receiving saline (group III) were used as controls. Results: 3-OH FAs with chain lengths of 10, 12, 14, 16, and 18 carbons were detected in all studied types of samples. Group I rats had 50-fold and group II rats had 3-fold higher serum concentrations of 3-hydoxytetradecanoic acid (3-OH 14:0, the predominant 3-OH FA of E. coli LPS) than group III rats. Concentrations of 3-OH 14:0 in livers from group I and II rats were similar and fourfold higher than in group III rats, whereas concentrations of the same acid in skeletal and heart tissues did not differ among the three groups of rats. 3-OH 14:0 dominated in heart and liver of group III rats, whereas 3-OH 16:0 (followed by 3-OH 14:0) dominated in skeletal muscles and blood. Conclusions: 3-OH FAs 10–18 carbons in length, probably originating from endotoxin and mitochondrial β-oxidation, are abundant in rat liver, skeletal muscles, and heart and can also be detected in blood. The widespread presence of these compounds in mammals limits their usefulness as LPS markers for endotoxin in clinical samples.


Fuel ◽  
2012 ◽  
Vol 96 ◽  
pp. 535-540 ◽  
Author(s):  
Gerhard Knothe ◽  
Steven C. Cermak ◽  
Roque L. Evangelista

2018 ◽  
pp. 189-193
Author(s):  
P Purwati ◽  
Tri Harningsih

ABSTRAK Minyak digunakan secara berulangkali mengakibatkan penurunan kualitas minyak. Salah satunya adalah peningkatan asam lemak bebasnya. Limbah ampas tebu yang diubah ke dalam bentuk arang digunakan menurunkan asam lemak bebas pada minyak goreng bekas. Penambahan arang ampas tebu dengan variasi massa dapat menurunkan asam lemak bebas. Asam lemak bebas minyak bekas sebelum ditambah dengan arang ampas tebu adalah 0,62 %. Angka tersebut mengalami penurunan setelah penambahan variasi massa ampas tebu dimulai dengan 2,5 gram; 5,0 gram; 7,5 gram; 10,0 gram dan 12,5 gram. Hasil asam lemak bebas berturut-turut 0,61%; 0,55%; 0,48%; 0,45%; 0,43%. Kondisi optimum dari massa arang ampas tebu sebesar 12,5 gram. Prosentase penurunan asam lemak bebas sebesar 30,41 % dengan kadar asam lemak bebas dari sebelum dilakukan adsorbsi sebanyak 0,61% menjadi 0,43%.   Kata kunci: arang ampas tebu, asam lemak bebas, minyak goreng bekas       ABSTRACT Oils used repeatedly will result in a decrease in the quality of oil. One of which is the increase in free fatty acids. The waste bagasse which is converted into charcoal form used to lower free fatty acid in used oil casting. The addition of charcoal of bagasse with variation of mass can decrease free fatty acid. The fatty acid free of used oil before it is added with sugarcane bagasse is 0,62%. The number decreases after the addition of variation of bagasse mass begins with 2,5 grams; 5,0 grams; 7,5 grams; 10,0 grams and 12; 5 grams. Free fatty acids result are 0,61%; 0,55%; 0,48%; 0,45%; 0; 43% respectively. The optimum condition from the mass of charcoal of bagasse is 12,5 grams. Percentage of free fatty acid decrease of 30,41% with free fatty acid content from before adsorbs 0,61% to 0,43%.   Keywords: charcoal of bagasse, free fatty acids, used cooking oil


Sign in / Sign up

Export Citation Format

Share Document