Identification and characterization of Corynebacterium lactis isolated from Amblyomma testudinarium of Sus scrofa in Malaysia

2018 ◽  
Vol 23 (9) ◽  
pp. 1838
Author(s):  
Fang-Shiang Lim ◽  
Shih-Keng Loong ◽  
Jing-Jing Khoo ◽  
Kim-Kee Tan ◽  
NurHafiza Zainal ◽  
...  

Ticks are vectors for a number of important human and animal pathogens. In this study, Corynebacterium lactis was isolated from Amblyomma testudinarium Koch tick sampled from wild boar in Malaysia. Imaging with transmission electron microscope and complete genome sequencing were performed for C. lactis which shared similar morphology to other Corynebacterium species and was susceptible to most of the commonly used antibiotics. The draft genome revealed a total length of 2,568,615 bp with G+C content of 64.3%. This is the first description of C. lactis isolation from ticks, raising the possibility that ticks could be a vector for this emerging pathogen of companion animals.

2018 ◽  
Vol 23 (10) ◽  
pp. 2086
Author(s):  
Fang Shiang Lim ◽  
Shih Keng Loong ◽  
Jing Jing Khoo ◽  
Kim Kee Tan ◽  
Nurhafiza Zainal ◽  
...  

AcknowledgmentsThis study was supported in parts by the research grants from University of Malaya, under the Research University Grants (RU016-2015) and (RU005-2017), and the Malaysia One Health University Network (MyOHUN) Seed Fund Award (MY/NCO/ACT/P001/SEEDFUND) provided by the United States Agency for International Development (USAID). 


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 203 ◽  
Author(s):  
Blanca Simon ◽  
David Bolumar ◽  
Alicia Amadoz ◽  
Jorge Jimenez-Almazán ◽  
Diana Valbuena ◽  
...  

Extracellular vesicles (EVs) are known to transport DNA, but their implications in embryonic implantation are unknown. The aim of this study was to investigate EVs production and secretion by preimplantation embryos and assess their DNA cargo. Murine oocytes and embryos were obtained from six- to eight-week-old females, cultured until E4.5 and analyzed using transmission electron microscopy to examine EVs production. EVs were isolated from E4.5-day conditioned media and quantified by nanoparticle tracking analysis, characterized by immunogold, and their DNA cargo sequenced. Multivesicular bodies were observed in murine oocytes and preimplantation embryos together with the secretion of EVs to the blastocoel cavity and blastocyst spent medium. Embryo-derived EVs showed variable electron-densities and sizes (20–500 nm) and total concentrations of 1.74 × 107 ± 2.60 × 106 particles/mL. Embryo secreted EVs were positive for CD63 and ARF6. DNA cargo sequencing demonstrated no differences in DNA between apoptotic bodies or smaller EVs, although they showed significant gene enrichment compared to control medium. The analysis of sequences uniquely mapping the murine genome revealed that DNA contained in EVs showed higher representation of embryo genome than vesicle-free DNA. Murine blastocysts secrete EVs containing genome-wide sequences of DNA to the medium, reinforcing the relevance of studying these vesicles and their cargo in the preimplantation moment, where secreted DNA may help the assessment of the embryo previous to implantation.


2009 ◽  
Vol 75 (16) ◽  
pp. 5290-5299 ◽  
Author(s):  
Hui-Ju Chen ◽  
Shih-Chuan Pan ◽  
Gwo-Chyuan Shaw

ABSTRACT A gene that codes for a novel intracellular poly(3-hydroxybutyrate) (PHB) depolymerase, designated PhaZ1, has been identified in the genome of Bacillus megaterium. A native PHB (nPHB) granule-binding assay showed that purified soluble PhaZ1 had strong affinity for nPHB granules. Turbidimetric analyses revealed that PhaZ1 could rapidly degrade nPHB granules in vitro without the need for protease pretreatment of the granules to remove surface proteins. Notably, almost all the final hydrolytic products produced from the in vitro degradation of nPHB granules by PhaZ1 were 3-hydroxybutyric acid (3HB) monomers. Unexpectedly, PhaZ1 could also hydrolyze denatured semicrystalline PHB, with the generation of 3HB monomers. The disruption of the phaZ1 gene significantly affected intracellular PHB mobilization during the PHB-degrading stage in B. megaterium, as demonstrated by transmission electron microscopy and the measurement of the PHB content. These results indicate that PhaZ1 is functional in intracellular PHB mobilization in vivo. Some of these features, which are in striking contrast with those of other known nPHB granule-degrading PhaZs, may provide an advantage for B. megaterium PhaZ1 in fermentative production of the biotechnologically valuable chiral compound (R)-3HB.


Author(s):  
Nanshan Qi ◽  
Shenquan Liao ◽  
Juan Li ◽  
Caiyan Wu ◽  
Minna Lv ◽  
...  

Abstract Autophagy plays an important role in maintaining cell homeostasis through degradation of denatured proteins and other biological macromolecules. In recent years, many researchers focus on mechanism of autophagy in apicomplexan parasites, but little was known about this process in avian coccidia. In our present study. The cloning, sequencing and characterization of autophagy-related gene (Etatg8) were investigated by quantitative real-time PCR (RT-qPCR), western blotting (WB), indirect immunofluorescence assays (IFAs) and transmission electron microscopy (TEM), respectively. The results have shown 375-bp ORF of Etatg8, encoding a protein of 124 amino acids in E. tenella, the protein structure and properties are similar to other apicomplexan parasites. RT-qPCR revealed Etatg8 gene expression during four developmental stages in E. tenella, but their transcriptional levels were significantly higher at the unsporulated oocysts stage. WB and IFA showed that EtATG8 was lipidated to bind the autophagosome membrane under starvation or rapamycin conditions, and aggregated in the cytoplasm of sporozoites and merozoites, however, the process of autophagosome membrane production can be inhibited by 3-methyladenine. In conclusion, we found that E. tenella has a conserved autophagy mechanism like other apicomplexan parasites, and EtATG8 can be used as a marker for future research on autophagy targeting avian coccidia.


2012 ◽  
Vol 12 (2) ◽  
pp. 194-203 ◽  
Author(s):  
Hugo Mélida ◽  
Jose V. Sandoval-Sierra ◽  
Javier Diéguez-Uribeondo ◽  
Vincent Bulone

ABSTRACT Some of the most devastating plant and animal pathogens belong to the oomycete class. The cell walls of these microorganisms represent an excellent target for disease control, but their carbohydrate composition is elusive. We have undertaken a detailed cell wall analysis in 10 species from 2 major oomycete orders, the Peronosporales and the Saprolegniales, thereby unveiling the existence of 3 clearly different cell wall types: type I is devoid of N -acetylglucosamine (GlcNAc) but contains glucuronic acid and mannose; type II contains up to 5% GlcNAc and residues indicative of cross-links between cellulose and 1,3-β-glucans; type III is characterized by the highest GlcNAc content (>5%) and the occurrence of unusual carbohydrates that consist of 1,6-linked GlcNAc residues. These 3 cell wall types are also distinguishable by their cellulose content and the fine structure of their 1,3-β-glucans. We propose a cell wall paradigm for oomycetes that can serve as a basis for the establishment of cell wall architectural models and the further identification of cell wall subtypes. This paradigm is complementary to morphological and molecular criteria for taxonomic grouping and provides useful information for unraveling poorly understood cell wall carbohydrate biosynthetic pathways through the identification and characterization of the corresponding enzymes.


Viruses ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 477 ◽  
Author(s):  
Vsevolod L. Popov ◽  
Robert B. Tesh ◽  
Scott C. Weaver ◽  
Nikos Vasilakis

Since the beginning of modern virology in the 1950s, transmission electron microscopy (TEM) has been an important and widely used technique for discovery, identification and characterization of new viruses. Using TEM, viruses can be differentiated by their ultrastructure: shape, size, intracellular location and for some viruses, by the ultrastructural cytopathic effects and/or specific structures forming in the host cell during their replication. Ultrastructural characteristics are usually sufficient for the identification of a virus to the family level. In this review, we summarize 25 years of experience in identification of novel viruses from the collection of the World Reference Center for Emerging Viruses and Arboviruses (WRCEVA).


2017 ◽  
Vol 5 (4) ◽  
pp. 415-422 ◽  
Author(s):  
Prakash Sarwa ◽  
Sanjay Kumar Verma

Two unicellular green microalgae, were isolated from Amani Shah Nallah (Jaipur, India) that receives discharge of dyeing industries. Preliminary morphological characterization using light microscopy showed ovoid, fusiform shape of cells with single to two celled coenobia in a culture suspension. Transmission electron microscopy (TEM) analyses depict abundant chloroplast located at the periphery of the cell, a pyrenoid as well as nucleus is visible in the centre. A well developed cell wall with many layers is also evident in TEM. Phylogenetic position and genetic variabilty among the isolated microalgal strains were investigated by 18S rDNA sequence analysis. The results suggest that the isolated microalgae belongs to family chlorophyceae and corresponds to genus Scenedesmus and genus Acutodesmus. Growth profile of both microalgal strains showed a typical sigmoid curve with specific growth rate of µmax, 0.839 day-1 and 0.654 day-1 for Scenedesmus sp. and Acutodesmus obliquus, respectively. The strains were allotted with MCC numbers by IARI, New Delhi as MCC26 for Scenedesmus sp.  and MCC33 for Acutodesmus obliquus.Int. J. Appl. Sci. Biotechnol. Vol 5(4): 415-422


Sign in / Sign up

Export Citation Format

Share Document