Effect of interface roughness on silicon-on-insulator–metal-semiconductor field-effect transistor mobility and the device low-power high-frequency operation

Author(s):  
T. Khan ◽  
D. Vasileska ◽  
T. J. Thornton
Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4213
Author(s):  
Seong-Kun Cho ◽  
Won-Ju Cho

In this study, a highly sensitive and selective sodium ion sensor consisting of a dual-gate (DG) structured silicon nanowire (SiNW) field-effect transistor (FET) as the transducer and a sodium-selective membrane extended gate (EG) as the sensing unit was developed. The SiNW channel DG FET was fabricated through the dry etching of the silicon-on-insulator substrate by using electrospun polyvinylpyrrolidone nanofibers as a template for the SiNW pattern transfer. The selectivity and sensitivity of sodium to other ions were verified by constructing a sodium ion sensor, wherein the EG was electrically connected to the SiNW channel DG FET with a sodium-selective membrane. An extremely high sensitivity of 1464.66 mV/dec was obtained for a NaCl solution. The low sensitivities of the SiNW channel FET-based sodium ion sensor to CaCl2, KCl, and pH buffer solutions demonstrated its excellent selectivity. The reliability and stability of the sodium ion sensor were verified under non-ideal behaviors by analyzing the hysteresis and drift. Therefore, the SiNW channel DG FET-based sodium ion sensor, which comprises a sodium-selective membrane EG, can be applied to accurately detect sodium ions in the analyses of sweat or blood.


2003 ◽  
Vol 93 (2) ◽  
pp. 1230-1240 ◽  
Author(s):  
M. D. Croitoru ◽  
V. N. Gladilin ◽  
V. M. Fomin ◽  
J. T. Devreese ◽  
W. Magnus ◽  
...  

D flip-flop is viewed as the most basic memory cell in by far most of computerized circuits, which brings it broad usage, particularly under current conditions where high-thickness pipeline innovation is as often as possible utilized in advanced coordinated circuits and flip-flop modules are key segments. As a constant research center, various sorts of zero flip-flops have been concocted and explored, and the ongoing exploration pattern has gone to rapid low-control execution, which can be come down to low power-defer item. To actualize superior VLSI, picking the most proper D flip-flop has clearly become an incredibly huge part in the structure stream. The quick headway in semiconductor innovation made it practicable to coordinate entire electronic framework on a solitary chip. CMOS innovation is the most doable semiconductor innovation yet it neglects to proceed according to desires past and at 32nm innovation hub because of the short channel impacts. GNRFET is Graphene Nano Ribbon Field Effect Transistor, it is seen that GNRFET is a promising substitute for low force application for its better grasp over the channel. In this paper, an audit on Dynamic Flip Flop and GNRFET is introduced. The power is improved in the proposed circuit for the D flip flop TSPC.


Proceedings ◽  
2020 ◽  
Vol 60 (1) ◽  
pp. 50
Author(s):  
Vladimir Generalov ◽  
Olga Naumova ◽  
Dmitry Shcherbakov ◽  
Alexander Safatov ◽  
Boris Zaitsev ◽  
...  

The presented results indicate virus-like particles of the coronavirus (CVP) using a nanowire (NW) biosensor based on silicon-on-insulator technology. In the experiment, we used suspensions of CVP and of specific antibodies to the virus. Measurements of the current value of the field-effect transistor before and after the introduction of the CVP on the surface of the nanowire were performed. Results showed antibody + CVP complexes on the phase section with the surface of the nanowire modulate the current of the field-effect transistor; CVP has an electrically positive charge on the phase section “nanowire surface-viral suspension»; antibody + CVP complexes have an electrically negative charge on the phase section “nanowire surface-viral suspension”; the sensitivity of the biosensor is made up of 10−18 M; the time display was 200–300 s.


Sign in / Sign up

Export Citation Format

Share Document